Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (2) : 160-188    https://doi.org/10.1007/s11684-018-0629-9
REVIEW
Current advances for bone regeneration based on tissue engineering strategies
Rui Shi1, Yuelong Huang2, Chi Ma1, Chengai Wu1, Wei Tian1,2()
1. Institute of Traumatology and Orthopaedics, Beijing Laboratory of Biomedical Materials, Beijing Jishuitan Hospital, Beijing 100035, China
2. Department of Spine Surgery of Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing 100035, China
 Download: PDF(763 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bone tissue engineering (BTE) is a rapidly developing strategy for repairing critical-sized bone defects to address the unmet need for bone augmentation and skeletal repair. Effective therapies for bone regeneration primarily require the coordinated combination of innovative scaffolds, seed cells, and biological factors. However, current techniques in bone tissue engineering have not yet reached valid translation into clinical applications because of several limitations, such as weaker osteogenic differentiation, inadequate vascularization of scaffolds, and inefficient growth factor delivery. Therefore, further standardized protocols and innovative measures are required to overcome these shortcomings and facilitate the clinical application of these techniques to enhance bone regeneration. Given the deficiency of comprehensive studies in the development in BTE, our review systematically introduces the new types of biomimetic and bifunctional scaffolds. We describe the cell sources, biology of seed cells, growth factors, vascular development, and the interactions of relevant molecules. Furthermore, we discuss the challenges and perspectives that may propel the direction of future clinical delivery in bone regeneration.

Keywords bone tissue engineering      stem cell      bone scaffold      growth factor      bone regeneration     
Corresponding Author(s): Wei Tian   
Just Accepted Date: 29 May 2018   Online First Date: 26 July 2018    Issue Date: 28 March 2019
 Cite this article:   
Rui Shi,Yuelong Huang,Chi Ma, et al. Current advances for bone regeneration based on tissue engineering strategies[J]. Front. Med., 2019, 13(2): 160-188.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0629-9
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I2/160
Fig.1  Main methods and essential procedures that compose bone tissue engineering (BTE). The BTE involves stem cells, biological growth factors, and biocompatible scaffolds that are transplanted to the bone defect area. Three different patterns are used in BTE as follows: (A) cells and factors directly blended with scaffolds; (B) scaffolds combined with factors first and then cocultured with stem cells; and (C) osteogenic culture and 3D culture with scaffolds and factors.
AM technologies Printing materials Main achievements in BTE References
Powder-based:
3DP
SLS
SLM/SEBM
Powder of ceramic, mental, polymer, and their composites Several in vivo studies have demonstrated its validity and potential in clinical practice [26, 2935]
Photosensitivity-based:
SLA
Polymers, hydrogels with good photopolymerization capabilities (PPF, gelatin, and TCM-based) PDLLA composites and PPF/ diethyl fumarate scaffolds were fabricated and cultured with hMSC and MC3T3-E1 osteoblasts [3638]
Melt-extrusion-based:
FDM
Biodegradable polymers and their composites (PCL, PLGA, PDL, PCL/ tricalcium phosphate, PLGA/TCP/HA) PCL composite-based scaffolds were fabricated and tested in vitro; PCL/HA bones enhanced the new bone formation in long load-bearing goat femur bone segmental defect model [39,42]
Tab.1  Additive manufacturing (AM) techniques for the production of cell-free bone tissue engineering (BTE) scaffolds
Cell sources Origin Differentiation medium Main markers
Adult stem cells
BMSCs Bone marrow 10–100 nmol/L DEX, 0.1–0. 5 mmol/L ACS, 10 mmol/L β-GP CD105, CD106, CD73, CD90, CD45, CD34
ADSCs Adipose tissue 10–100 nmol/L DEX, 10 mmol/L β-GP, 50 μmol/L ASP CD29, CD34, CD73, CD90, CD105, CD106
MDSCs Skeletal muscle 0. 5 mmol/L ACS, 5 mmol/L β-GP, 10 nmol/L DEX CD44, CD73, CD90, CD105, Sca-1
SDSCs Synovium 10 nmol/L DEX, 20 mmol/L β-GP, 50 μmol/L ASP CD44, CD73, CD105, CD166, CD14
DPSCs Pulps 100 nmol/L DEX, 0.5 mmol/L ACS, 10 mmol/L β-GP CD44, CD90, CD34, CD166
USCs Urine 100 nmol/L DEX, 10 mmol/L β-GP, 50 μmol/L ASP CD44, CD73, CD90, CD105, CD133, CD45, HLA-DR
ESCs Embryo 100 nmol/L DEX, 10 mmol/L β-GP, 0.5?mmol/L ACS CD9, Oct-4, SOX2, SSEA3/4 and NANOG, TRA-1-60/81, SSEA1
Extra-embryonic stem cells
UCBSCs Umbilical cord blood 100 nmol/LDEX, 10 mmol/L β-GP, 0.5 mmol/L ACS CD29, CD44, CD54, CD73, CD90, CD105, CD49d
Wharton’s Jelly SCs Umbilical cord 2 mmol/L L-glutamine, 100 nmol/L DEX, 10 mmol/L β-GP, 0.2 mmol/L ACS CD34, CD45, CD44, CD73, CD90, CD105, HLA-DR, CD18
AFSCs Amniotic fluid 100 nmol/L DEX, 10 mmol/L β-GP, 0.5 mmol/L ACS CD31, CD44 CD45, CD90
PDSCs Placenta 100 nmol/L DEX, 10 mmol/L β-GP, 20 μmol/L ASP CD29, CD73, CD166, CD34, CD45, SSEA-1/4, Oct-4, Sox2
AMSCs Amnion 100 nmol/L DEX, 10 mmol/L β-GP, 100 μmmol/LASC Oct-4, Nanog, CD34, CD90, CD105
IPSCs Somatic cells 100 nmol/L DEX, 10 mmol/L β-GP, 100 μmol/L ASP CD29, CD34, CD44, CD73, CD90, CD105, Sox2, TRA-1-81, Oct3/4
Tab.2  Characteristics of the different stem cells
Fig.2  Extraction processes and osteogenic differentiation of stem cells in the BTE. The tissues are first dissociated from the patients and digested with enzymes. The primary cells are cultured and followed by magnetic activated cell sorting (MACS). Those stem cells are differentiated into osteocytes with the help of growth factors.
Fig.3  Classifications and action patterns of bioactive factors in BTE. Bioactive factors can be divided into four parts, namely, growth factors, peptides, chemical molecules, and other small molecules, according to their characteristics. These factors present distinct actions on the cytoplasmic and nuclear components, such as receptors, diffusion, and drug delivery systems.
Peptide Cells Effects References
OGP Rat mesenchymal stem cell Increase of osteogenic markers in osteoinductive medium and new bone formation in vivo [195]
PTH MC3T3-E1 Increased hydrazine-bisphosphonates affinity to bone and improved hydrazine bisphosphonates interaction with osteoblastic cells in basal medium [196]
Heparin-binding peptide Human mesenchymal cells Increase of mineralization in osteoinductive medium [197]
Tab.3  Peptides types in BTE
Small molecule Drug delivery system In vitro/in vivo osteogenesis References
Phenamil 2D/3D scaffold Enhanced proliferation of MC3T3 cells, increased ALP expression and enhanced mineralization [202]
Oxysterols Hydrogel/sponge/3D scaffold Oxysterol-21 promoted bone formation in the callus and increased mechanical stability of lumber vertebral segments [216]
Purmorphamine Bone adhesive composite beads Activation of Hh pathway [222]
FTY720 Bone autografts/ 3D scaffold Coated allografts promoted new bone formation with significant increases in mechanical properties when compared to the controls [221]
Simvastatin 3D scaffold/porous bone
Cement/ hydrogel
New bone formation was observed after scaffold implantation in tibial defect model. In vivo osteogenesis were observed when loaded scaffolds were combined with MSCs cell sheet [223,224]
TH (helioxanthin derivative) Tetrapod-shaped granules Promote osteoblastic differentiation in mouse MC3T3-E1 cells [225]
FK506 3D scaffold Evidenced by the ectopic bone formation in subcutaneous location [226]
Tab.4  Different kinds of small osteoinductive molecules
Gene of interest Delivery system Cell/animal model Function References
Gucocorticoid receptor (GR) Polymer Human bone marrow Successful siRNA delivery and release for up to 40 days [228]
RANK Polymer Murine osteoclast precursor cells Inhibition of bone resorption due to RANK expression knockdown [229]
Semaphorin 4d Polymeric nanoparticles Ovriaectomy in mice Decreased bone loss resulted from osteoporosis [231]
Tab.5  Different types of other small molecules for BTE
1 SNKhan, FP Cammisa Jr, HSSandhu, ADDiwan, FPGirardi, JMLane. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13(1): 77–86
https://doi.org/10.5435/00124635-200501000-00010 pmid: 15712985
2 AOryan, S Alidadi, AMoshiri, NMaffulli. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9(1): 18
https://doi.org/10.1186/1749-799X-9-18 pmid: 24628910
3 MSwetha, K Sahithi, AMoorthi, NSrinivasan, KRamasamy, NSelvamurugan. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 2010; 47(1): 1–4
https://doi.org/10.1016/j.ijbiomac.2010.03.015 pmid: 20361991
4 MHosseinkhani, D Mehrabani, MHKarimfar, SBakhtiyari, AManafi, RShirazi. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg 2014; 3(1): 3–7
pmid: 25489516
5 SGómez, MD Vlad, JLópez, EFernández. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 2016; 42: 341–350
https://doi.org/10.1016/j.actbio.2016.06.032 pmid: 27370904
6 ND’souza, F Rossignoli, GGolinelli, GGrisendi, CSpano, OCandini, SOsturu, FCatani, PPaolucci, EMHorwitz, MDominici. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13(1): 186
https://doi.org/10.1186/s12916-015-0426-0 pmid: 26265166
7 MFPittenger. Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 2008; 449: 27–44
pmid: 18370081
8 ZGWang, Y Wang, YHuang, QLu, L Zheng, DHu, WKFeng, YLLiu, KT Ji, HYZhang, XBFu, XK Li, MPChu, JXiao. bFGF regulates autophagy and ubiquitinated protein accumulation induced by myocardial ischemia/reperfusion via the activation of the PI3K/Akt/mTOR pathway. Sci Rep 2015; 5(1): 9287
https://doi.org/10.1038/srep09287 pmid: 25787015
9 MKNguyen, E Alsberg. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 2014; 39(7): 1235–1265
https://doi.org/10.1016/j.progpolymsci.2013.12.001 pmid: 25242831
10 LPolo-Corrales, M Latorre-Esteves, JERamirez-Vick. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014; 14(1): 15–56
https://doi.org/10.1166/jnn.2014.9127 pmid: 24730250
11 JRPorter, TT Ruckh, KCPopat. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539–1560
pmid: 19824042
12 TGong, J Xie, JLiao, TZhang, SLin, Y Lin. Nanomaterials and bone regeneration. Bone Res 2015; 3(1): 15029
https://doi.org/10.1038/boneres.2015.29 pmid: 26558141
13 DTang, RS Tare, LYYang, DFWilliams, KLOu, RO Oreffo. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83: 363–382
https://doi.org/10.1016/j.biomaterials.2016.01.024 pmid: 26803405
14 GMHarris, K Rutledge, QCheng, JBlanchette, EJabbarzadeh. Strategies to direct angiogenesis within scaffolds for bone tissue engineering. Curr Pharm Des 2013; 19(19): 3456–3465
https://doi.org/10.2174/1381612811319190011 pmid: 23432671
15 MAFernandez-Yague, SAAbbah, LMcNamara, DIZeugolis, APandit, MJBiggs. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84: 1–29
https://doi.org/10.1016/j.addr.2014.09.005 pmid: 25236302
16 YLi, TT Thula, SJee, SLPerkins, CAparicio, EPDouglas, LBGower. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links. Biomacromolecules 2012; 13(1): 49–59
https://doi.org/10.1021/bm201070g pmid: 22133238
17 JVenkatesan, SK Kim. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 2014; 10(10): 3124–3140
https://doi.org/10.1166/jbn.2014.1893 pmid: 25992432
18 LSang, J Huang, DLuo, ZChen, X Li. Bone-like nanocomposites based on self-assembled protein-based matrices with Ca2+ capturing capability. J Mater Sci Mater Med 2010; 21(9): 2561–2568
https://doi.org/10.1007/s10856-010-4117-2 pmid: 20582716
19 DWHutmacher. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529–2543
https://doi.org/10.1016/S0142-9612(00)00121-6 pmid: 11071603
20 TOsathanon, ML Linnes, RMRajachar, BDRatner, MJSomerman, CMGiachelli. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials 2008; 29(30): 4091–4099
https://doi.org/10.1016/j.biomaterials.2008.06.030 pmid: 18640716
21 KFLin, S He, YSong, CMWang, YGao, JQ Li, PTang, ZWang, L Bi, GXPei. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl Mater Interfaces 2016; 8(11): 6905–6916
https://doi.org/10.1021/acsami.6b00815 pmid: 26930140
22 GERyan, AS Pandit, DPApatsidis. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 2008; 29(27): 3625–3635
https://doi.org/10.1016/j.biomaterials.2008.05.032 pmid: 18556060
23 SPatra, V Young. A review of 3D printing techniques and the future in biofabrication of bioprinted tissue. Cell Biochem Biophys 2016; 74(2): 93–98
https://doi.org/10.1007/s12013-016-0730-0 pmid: 27193609
24 GBrunello, S Sivolella, RMeneghello, LFerroni, CGardin, APiattelli, BZavan, EBressan. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016; 34(5): 740–753
https://doi.org/10.1016/j.biotechadv.2016.03.009 pmid: 27086202
25 PHWarnke, H Seitz, FWarnke, STBecker, SSivananthan, ESherry, QLiu, J Wiltfang, TDouglas. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomater 2010; 93(1): 212–217
pmid: 20091914
26 YXia, P Zhou, XCheng, YXie, C Liang, CLi, SXu. Selective laser sintering fabrication of nano-hydroxyapatite/poly-e-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomedicine 2013; 8: 4197–4213
pmid: 24204147
27 HNChia, BM Wu. Recent advances in 3D printing of biomaterials. J Biol Eng 2015; 9(1): 4
https://doi.org/10.1186/s13036-015-0001-4 pmid: 25866560
28 CMota, D Puppi, FChiellini, EChiellini. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 2015; 9(3): 174–190
https://doi.org/10.1002/term.1635 pmid: 23172792
29 LCZhang, H Attar, MCalin, JEckert. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications. Mater Technol 2016; 31(2): 66-76
https://doi.org/10.1179/1753555715Y.0000000076
30 CKörner. Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 2016; 61(5): 361–367
https://doi.org/10.1080/09506608.2016.1176289
31 SBose, S Tarafder, ABandyopadhyay. Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng 2017; 45(1): 261–272
pmid: 27287311
32 JTorres, F Tamimi, MHAlkhraisat, JCPrados-Frutos, ERastikerdar, UGbureck, JEBarralet, ELópez-Cabarcos. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodontol 2011; 38(12): 1147–1153
https://doi.org/10.1111/j.1600-051X.2011.01787.x pmid: 22092695
33 STarafder, NM Davies, ABandyopadhyay, SBose. 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci 2013; 1(12): 1250–1259
https://doi.org/10.1039/c3bm60132c pmid: 24729867
34 FTamimi, J Torres, KAl-Abedalla, ELopez-Cabarcos, MHAlkhraisat, DCBassett, UGbureck, JEBarralet. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials 2014; 35(21): 5436–5445
https://doi.org/10.1016/j.biomaterials.2014.03.050 pmid: 24726538
35 MCastilho, M Dias, EVorndran, UGbureck, PFernandes, IPires, BGouveia, HArmés, EPires, JRodrigues. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication 2014; 6(2): 025005
https://doi.org/10.1088/1758-5082/6/2/025005 pmid: 24658159
36 ARonca, L Ambrosio, DWGrijpma. Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithography. J Appl Biomater Funct Mater 2012; 10(3): 249–258
https://doi.org/10.5301/JABFM.2012.10211 pmid: 23242874
37 PXLan, JW Lee, YJSeol, DWCho. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 2009; 20(1): 271–279
https://doi.org/10.1007/s10856-008-3567-2 pmid: 18763023
38 RGuo, S Lu, JMPage, ARMerkel, SBasu, JA Sterling, SAGuelcher. Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv Healthc Mater 2015; 4(12): 1826–1832
https://doi.org/10.1002/adhm.201500099 pmid: 26121662
39 MANowicki, NJ Castro, MWPlesniak, LGZhang. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 2016; 27(41): 414001
https://doi.org/10.1088/0957-4484/27/41/414001 pmid: 27606933
40 BOstrowska, A Di Luca, KSzlazak, LMoroni, WSwieszkowski. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration. J Biomed Mater Res A 2016; 104(4): 991–1001
https://doi.org/10.1002/jbm.a.35637 pmid: 26749200
41 NXu, X Ye, DWei, JZhong, YChen, G Xu, DHe. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Interfaces 2014; 6(17): 14952–14963
https://doi.org/10.1021/am502716t pmid: 25133309
42 YXuan, H Tang, BWu, XDing, Z Lu, WLi, ZXu. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J Biomed Mater Res A 2014; 102(10): 3401–3408
https://doi.org/10.1002/jbm.a.35012 pmid: 24142768
43 MMehta, K Schmidt-Bleek, GNDuda, DJMooney. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012; 64(12): 1257–1276
https://doi.org/10.1016/j.addr.2012.05.006 pmid: 22626978
44 MFarokhi, F Mottaghitalab, MAShokrgozar, KLOu, C Mao, HHosseinkhani. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225: 152–169
https://doi.org/10.1016/j.jconrel.2016.01.033 pmid: 26805518
45 TMMcFadden, GP Duffy, ABAllen, HYStevens, SMSchwarzmaier, NPlesnila, JMMurphy, FPBarry, REGuldberg, FJO’Brien. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater 2013; 9(12): 9303–9316
https://doi.org/10.1016/j.actbio.2013.08.014 pmid: 23958783
46 EABayer, R Gottardi, MVFedorchak, SRLittle. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219: 129–140
https://doi.org/10.1016/j.jconrel.2015.08.004 pmid: 26264834
47 FBBasmanav, GT Kose, VHasirci. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008; 29(31): 4195–4204
https://doi.org/10.1016/j.biomaterials.2008.07.017 pmid: 18691753
48 SKim, Y Kang, CAKrueger, MSen, JB Holcomb, DChen, JCWenke, YYang. Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 2012; 8(5): 1768–1777
https://doi.org/10.1016/j.actbio.2012.01.009 pmid: 22293583
49 SNRothstein, KD Huber, NSluis-Cremer, SRLittle. In vitro characterization of a sustained-release formulation for enfuvirtide. Antimicrob Agents Chemother 2014; 58(3): 1797–1799
https://doi.org/10.1128/AAC.02440-13 pmid: 24366751
50 RAPerez, HW Kim. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21: 2–19
https://doi.org/10.1016/j.actbio.2015.03.013 pmid: 25792279
51 DHKempen, L Lu, AHeijink, TEHefferan, LBCreemers, AMaran, MJYaszemski, WJDhert. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 2009; 30(14): 2816–2825
https://doi.org/10.1016/j.biomaterials.2009.01.031 pmid: 19232714
52 CWu, W Fan, MGelinsky, YXiao, J Chang, TFriis, GCuniberti. In situ preparation and protein delivery of silicate-alginate composite microspheres with core-shell structure. J R Soc Interface 2011; 8(65): 1804–1814
https://doi.org/10.1098/rsif.2011.0201 pmid: 21613289
53 YBai, Y Leng, GYin, XPu, Z Huang, XLiao, XChen, Y Yao. Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Res 2014; 356(1): 109–121
https://doi.org/10.1007/s00441-013-1781-9 pmid: 24442492
54 EBoanini, A Bigi. Biomimetic gelatin-octacalcium phosphate core–shell microspheres. J Colloid Interface Sci 2011; 362(2):594–599
55 KKim, J Lam, SLu, PPSpicer, ALueckgen, YTabata, MEWong, JAJansen, AGMikos, FKKasper. Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 2013; 168(2): 166–178
https://doi.org/10.1016/j.jconrel.2013.03.013 pmid: 23541928
56 SLu, J Lam, JETrachtenberg, EJLee, H Seyednejad, JJJP van den Beucken, YTabata, MEWong, JAJansen, AGMikos, FKKasper. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 2014; 35(31): 8829–8839
https://doi.org/10.1016/j.biomaterials.2014.07.006 pmid: 25047629
57 NJShah, MN Hyder, MAQuadir, NMDorval Courchesne, HJSeeherman, MNevins, MSpector, PTHammond. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. Proc Natl Acad Sci U S A 2014; 111(35): 12847–12852
https://doi.org/10.1073/pnas.1408035111 pmid: 25136093
58 PCDeMuth, JJ Moon, HSuh, PTHammond, DJIrvine. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012; 6(9): 8041–8051
https://doi.org/10.1021/nn302639r pmid: 22920601
59 JMin, RD Braatz, PTHammond. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials 2014; 35(8): 2507–2517
https://doi.org/10.1016/j.biomaterials.2013.12.009 pmid: 24388389
60 BDerby. Printing and prototyping of tissues and scaffolds. Science 2012; 338(6109): 921–926
https://doi.org/10.1126/science.1226340 pmid: 23161993
61 JLi, M Chen, XFan, HZhou. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 2016; 14(1): 271
https://doi.org/10.1186/s12967-016-1028-0 pmid: 27645770
62 HWKang, SJ Lee, IKKo, CKengla, JJYoo, A Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016; 34(3): 312–319
https://doi.org/10.1038/nbt.3413 pmid: 26878319
63 HGudapati, M Dey, IOzbolat. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 2016; 102: 20–42
https://doi.org/10.1016/j.biomaterials.2016.06.012 pmid: 27318933
64 XCui, K Breitenkamp, MGFinn, MLotz, DD D’Lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012; 18(11-12): 1304–1312
https://doi.org/10.1089/ten.tea.2011.0543 pmid: 22394017
65 XCui, K Breitenkamp, MLotz, DD’Lima. Synergistic action of fibroblast growth factor-2 and transforming growth factor-β1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 2012; 109(9): 2357–2368
https://doi.org/10.1002/bit.24488 pmid: 22508498
66 XCui, G Gao, YQiu. Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 2013; 35(3): 315–321
https://doi.org/10.1007/s10529-012-1087-0 pmid: 23160742
67 GGao, AF Schilling, TYonezawa, JWang, G Dai, XCui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 2014; 9(10): 1304–1311
https://doi.org/10.1002/biot.201400305 pmid: 25130390
68 GGao, T Yonezawa, KHubbell, GDai, X Cui. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015; 10(10): 1568–1577
https://doi.org/10.1002/biot.201400635 pmid: 25641582
69 GGao, AF Schilling, KHubbell, TYonezawa, DTruong, YHong, G Dai, XCui. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 2015; 37(11): 2349–2355
https://doi.org/10.1007/s10529-015-1921-2 pmid: 26198849
70 CMandrycky, Z Wang, KKim, DHKim. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34(4): 422–434
https://doi.org/10.1016/j.biotechadv.2015.12.011 pmid: 26724184
71 ITOzbolat, M Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321–343
https://doi.org/10.1016/j.biomaterials.2015.10.076 pmid: 26561931
72 SVMurphy, A Atala. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785
https://doi.org/10.1038/nbt.2958 pmid: 25093879
73 CHLu, YH Chang, SYLin, KCLi, YC Hu. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31(8): 1695–1706
https://doi.org/10.1016/j.biotechadv.2013.08.015 pmid: 23994567
74 ACarlier, GA Skvortsov, FHafezi, EFerraris, JPatterson, BKoç, HVan Oosterwyck. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication 2016; 8(2): 025009
https://doi.org/10.1088/1758-5090/8/2/025009 pmid: 27187017
75 LKoch, M Gruene, CUnger, BChichkov. Laser assisted cell printing. Curr Pharm Biotechnol 2013; 14(1): 91–97
pmid: 23570054
76 SJana, A Lerman. Bioprinting a cardiac valve. Biotechnol Adv 2015; 33(8): 1503–1521
https://doi.org/10.1016/j.biotechadv.2015.07.006 pmid: 26254880
77 SCatros, JC Fricain, BGuillotin, BPippenger, RBareille, MRemy, E Lebraud, BDesbat, JAmédée, FGuillemot. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011; 3(2): 025001
https://doi.org/10.1088/1758-5082/3/2/025001 pmid: 21527813
78 MAli, E Pages, ADucom, AFontaine, FGuillemot. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014; 6(4): 045001
https://doi.org/10.1088/1758-5082/6/4/045001 pmid: 25215452
79 QYao, B Wei, YGuo, CJin, X Du, CYan, JYan, W Hu, YXu, ZZhou, Y Wang, LWang. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold. J Mater Sci Mater Med 2015; 26(1): 51
https://doi.org/10.1007/s10856-014-5360-8 pmid: 25596860
80 FPati, TH Song, GRijal, JJang, SW Kim, DWCho. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 2015; 37: 230–241
https://doi.org/10.1016/j.biomaterials.2014.10.012 pmid: 25453953
81 JDBaranski, RR Chaturvedi, KRStevens, JEyckmans, BCarvalho, RDSolorzano, MTYang, JSMiller, SNBhatia, CSChen. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A 2013; 110(19): 7586–7591
https://doi.org/10.1073/pnas.1217796110 pmid: 23610423
82 GDBarabaschi, V Manoharan, QLi, LEBertassoni. Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol 2015; 881: 79–94
https://doi.org/10.1007/978-3-319-22345-2_5 pmid: 26545745
83 DQin, Y Xia, GMWhitesides. Soft lithography for micro- and nanoscale patterning. Nat Protoc 2010; 5(3): 491–502
https://doi.org/10.1038/nprot.2009.234 pmid: 20203666
84 MNikkhah, N Eshak, PZorlutuna, NAnnabi, MCastello, KKim, A Dolatshahi-Pirouz, FEdalat, HBae, Y Yang, AKhademhosseini. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 2012; 33(35): 9009–9018
https://doi.org/10.1016/j.biomaterials.2012.08.068 pmid: 23018132
85 SRaghavan, CM Nelson, JDBaranski, ELim, CS Chen. Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 2010; 16(7): 2255–2263
https://doi.org/10.1089/ten.tea.2009.0584 pmid: 20180698
86 YZheng, J Chen, MCraven, NWChoi, STotorica, ADiaz-Santana, PKermani, BHempstead, CFischbach-Teschl, JALópez, ADStroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 2012; 109(24): 9342–9347
https://doi.org/10.1073/pnas.1201240109 pmid: 22645376
87 LSWray, K Tsioris, ESGi, FGOmenetto, DLKaplan. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 2013; 23(27): 3404–3412
https://doi.org/10.1002/adfm.201202926 pmid: 24058328
88 JSMiller, KR Stevens, MTYang, BMBaker, DHNguyen, DMCohen, EToro, AA Chen, PAGalie, XYu, R Chaturvedi, SNBhatia, CSChen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012; 11(9): 768–774
https://doi.org/10.1038/nmat3357 pmid: 22751181
89 LEBertassoni, JC Cardoso, VManoharan, ALCristino, NSBhise, WAAraujo, PZorlutuna, NEVrana, AMGhaemmaghami, MRDokmeci, AKhademhosseini. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014; 6(2): 024105
https://doi.org/10.1088/1758-5082/6/2/024105 pmid: 24695367
90 ISKinstlinger, DR Yalacki, JSMiller. Engineered tissues with perfusable vascular networks created by sacrificial templating of laser sintered carbohydrates. Front Bioeng Biotechnol 2016; Conference Abstract: 10th World Biomaterials Congress.
91 DBKolesky, RL Truby, ASGladman, TABusbee, KAHoman, JALewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014; 26(19): 3124–3130
https://doi.org/10.1002/adma.201305506 pmid: 24550124
92 CLRadtke, R Nino-Fong, BPEsparza Gonzalez, HStryhn, LAMcDuffee. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells. Am J Vet Res 2013; 74(5): 790–800
https://doi.org/10.2460/ajvr.74.5.790 pmid: 23627394
93 SKern, H Eichler, JStoeve, HKlüter, KBieback. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294–1301
https://doi.org/10.1634/stemcells.2005-0342 pmid: 16410387
94 APantalone, I Antonucci, MGuelfi, PPantalone, FGUsuelli, LStuppia, VSalini. Amniotic fluid stem cells: an ideal resource for therapeutic application in bone tissue engineering. Eur Rev Med Pharmacol Sci 2016; 20(13): 2884–2890
pmid: 27424990
95 XPetridis, E Diamanti, GChTrigas, DKalyvas, EKitraki. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J Craniomaxillofac Surg 2015; 43(4): 483–490
https://doi.org/10.1016/j.jcms.2015.02.003 pmid: 25753474
96 JGuan, J Zhang, HLi, ZZhu, S Guo, XNiu, YWang, C Zhang. Human urine derived stem cells in combination with b-TCP can be applied for bone regeneration. PLoS One 2015; 10(5): e0125253
https://doi.org/10.1371/journal.pone.0125253 pmid: 25970295
97 DJIllich, N Demir, MStojkovic, MScheer, DRothamel, JNeugebauer, JHescheler, JEZoller. Induced pluripotent stem (iPS) cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 2011; 29(4): 555–563
https://doi.org/10.1002/stem.611 pmid: 21308867
98 CKChan, EY Seo, JYChen, DLo, A McArdle, RSinha, RTevlin, JSeita, JVincent-Tompkins, TWearda, WJLu, K Senarath-Yapa, MTChung, OMarecic, MTran, KS Yan, RUpton, GGWalmsley, ASLee, D Sahoo, CJKuo, ILWeissman, MTLongaker. Identification and specification of the mouse skeletal stem cell. Cell 2015; 160(1-2): 285–298
https://doi.org/10.1016/j.cell.2014.12.002 pmid: 25594184
99 WKAicher, HJ Bühring, MHart, BRolauffs, ABadke, GKlein. Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells—potential and pitfalls. Adv Drug Deliv Rev 2011; 63(4-5): 342–351
https://doi.org/10.1016/j.addr.2010.12.004 pmid: 21184789
100 OSBeane, VC Fonseca, LLCooper, GKoren, EMDarling. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One 2014; 9(12): e115963
https://doi.org/10.1371/journal.pone.0115963 pmid: 25541697
101 YYLi, HW Cheng, KMCheung, DChan, BP Chan. Mesenchymal stem cell-collagen microspheres for articular cartilage repair: cell density and differentiation status. Acta Biomater 2014; 10(5): 1919–1929
https://doi.org/10.1016/j.actbio.2014.01.002 pmid: 24418436
102 HMizuno. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 2009; 76(2): 56–66
https://doi.org/10.1272/jnms.76.56 pmid: 19443990
103 BLevi, MT Longaker. Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells 2011; 29(4): 576–582
https://doi.org/10.1002/stem.612 pmid: 21305671
104 CFMarkarian, GZ Frey, MDSilveira, EMChem, ARMilani, PBEly, AP Horn, NBNardi, MCamassola. Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol Lett 2014; 36(4): 693–702
https://doi.org/10.1007/s10529-013-1425-x pmid: 24322777
105 PCBaer, H Geiger. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012; 2012: 81
106 BLindroos, R Suuronen, SMiettinen. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 2011; 7(2): 269–291
https://doi.org/10.1007/s12015-010-9193-7 pmid: 20853072
107 BGharaibeh, A Lu, JTebbets, BZheng, JFeduska, MCrisan, BPéault, JCummins, JHuard. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc 2008; 3(9): 1501–1509
https://doi.org/10.1038/nprot.2008.142 pmid: 18772878
108 XWu, S Wang, BChen, XAn. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 2010; 340(3): 549–567
https://doi.org/10.1007/s00441-010-0978-4 pmid: 20495827
109 ANimura, T Muneta, HKoga, TMochizuki, KSuzuki, HMakino, AUmezawa, ISekiya. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 2008; 58(2): 501–510
https://doi.org/10.1002/art.23219 pmid: 18240254
110 JFan, RR Varshney, LRen, DCai, DA Wang. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 2009; 15(1): 75–86
https://doi.org/10.1089/ten.teb.2008.0586 pmid: 19196118
111 HYamazaki, M Tsuneto, MYoshino, KYamamura, SHayashi. Potential of dental mesenchymal cells in developing teeth. Stem Cells 2007; 25(1): 78–87
https://doi.org/10.1634/stemcells.2006-0360 pmid: 16945997
112 JJGuan, X Niu, FXGong, BHu, SC Guo, YLLou, CQZhang, ZFDeng, YWang. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology. Tissue Eng Part A 2014; 20(13-14): 1794–1806
https://doi.org/10.1089/ten.tea.2013.0584 pmid: 24387670
113 JAThomson, J Itskovitz-Eldor, SSShapiro, MAWaknitz, JJSwiergiel, VSMarshall, JMJones. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147
https://doi.org/10.1126/science.282.5391.1145 pmid: 9804556
114 YSHwang, JM Polak, AMantalaris. In vitro direct osteogenesis of murine embryonic stem cells without embryoid body formation. Stem Cells Dev 2008; 17(5): 963–970
https://doi.org/10.1089/scd.2007.0228 pmid: 18564030
115 SStröm, J Inzunza, KHGrinnemo, KHolmberg, EMatilainen, AMStrömberg, EBlennow, OHovatta. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod 2007; 22(12): 3051–3058
https://doi.org/10.1093/humrep/dem335 pmid: 17959612
116 BBielec, R Stojko. Stem cells of umbilical blood cord — therapeutic use. Postepy Hig Med Dosw (Online) 2015; 69: 853–863 (in Polish)
https://doi.org/10.5604/17322693.1162675 pmid: 26206998
117 CYFong, LL Chak, ABiswas, JHTan, K Gauthaman, WKChan, ABongso. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 2011; 7(1): 1–16
https://doi.org/10.1007/s12015-010-9166-x pmid: 20602182
118 PHuang, LM Lin, XYWu, QLTang, XYFeng, GYLin, X Lin, HWWang, THHuang, LMa. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 2010; 109(4): 747–754
pmid: 20052672
119 PDe Coppi, G Bartsch Jr, MMSiddiqui, TXu, CC Santos, LPerin, GMostoslavsky, ACSerre, EYSnyder, JJYoo, ME Furth, SSoker, AAtala. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25(1): 100–106
https://doi.org/10.1038/nbt1274 pmid: 17206138
120 MGRoubelakis, KI Pappa, VBitsika, DZagoura, AVlahou, HAPapadaki, AAntsaklis, NPAnagnou. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007; 16(6): 931–952
https://doi.org/10.1089/scd.2007.0036 pmid: 18047393
121 OTrohatou, NP Anagnou, MGRoubelakis. Human amniotic fluid stem cells as an attractive tool for clinical applications. Curr Stem Cell Res Ther 2013; 8(2): 125–132
https://doi.org/10.2174/1574888X11308020003 pmid: 23140502
122 SGholizadeh-Ghaleh Aziz, FPashaei-Asl, ZFardyazar, MPashaiasl. Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PLoS One 2016; 11(7): e0158281
pmid: 27434028
123 JMLee, J Jung, HJLee, SJJeong, KJCho, SG Hwang, GJKim. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 2012; 13(2): 219–224
https://doi.org/10.1016/j.intimp.2012.03.024 pmid: 22487126
124 HFazekasova, R Lechler, KLangford, GLombardi. Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. J Tissue Eng Regen Med 2011; 5(9): 684–694
https://doi.org/10.1002/term.362 pmid: 21953866
125 ZNZhong, SF Zhu, ADYuan, GHLu, ZY He, ZQFa, WHLi. Potential of placenta-derived mesenchymal stem cells as seed cells for bone tissue engineering: preliminary study of osteoblastic differentiation and immunogenicity. Orthopedics 2012; 35(9): 779–788
https://doi.org/10.3928/01477447-20120822-07 pmid: 22955387
126 OVSemenov, S Koestenbauer, MRiegel, NZech, R Zimmermann, AHZisch, AMalek. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 2010; 202(2): 193.e1–193.e13
https://doi.org/10.1016/j.ajog.2009.10.869 pmid: 20035913
127 ALange-Consiglio, B Corradetti, AMeucci, RPerego, DBizzaro, FCremonesi. Characteristics of equine mesenchymal stem cells derived from amnion and bone marrow: in vitro proliferative and multilineage potential assessment. Equine Vet J 2013; 45(6): 737–744
https://doi.org/10.1111/evj.12052 pmid: 23527626
128 SViolini, C Gorni, LFPisani, PRamelli, MCaniatti, PMariani. Isolation and differentiation potential of an equine amnion-derived stromal cell line. Cytotechnology 2012; 64(1): 1–7
https://doi.org/10.1007/s10616-011-9398-x pmid: 21994048
129 KTakahashi, S Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024 pmid: 16904174
130 KTakahashi, K Tanabe, MOhnuki, MNarita, TIchisaka, KTomoda, SYamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019 pmid: 18035408
131 JYu, MA Vodyanik, KSmuga-Otto, JAntosiewicz-Bourget, JLFrane, STian, J Nie, GAJonsdottir, VRuotti, RStewart, IISlukvin, JAThomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917–1920
https://doi.org/10.1126/science.1151526 pmid: 18029452
132 YJung, G Bauer, JANolta. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012; 30(1): 42–47
https://doi.org/10.1002/stem.727 pmid: 21898694
133 MGrellier, L Bordenave, JAmédée. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 2009; 27(10): 562–571
https://doi.org/10.1016/j.tibtech.2009.07.001 pmid: 19683818
134 TNakasa, O Ishida, TSunagawa, ANakamae, YYasunaga, MAgung, MOchi. Prefabrication of vascularized bone graft using a combination of fibroblast growth factor-2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic. J Biomed Mater Res A 2005; 75(2): 350–355
https://doi.org/10.1002/jbm.a.30435 pmid: 16088890
135 KKawamura, H Yajima, HOhgushi, YTomita, YKobata, KShigematsu, YTakakura. Experimental study of vascularized tissue-engineered bone grafts. Plast Reconstr Surg 2006; 117(5): 1471–1479
https://doi.org/10.1097/01.prs.0000197883.17428.22 pmid: 16641715
136 HSun, Z Qu, YGuo, GZang, B Yang. In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed Eng Online 2007; 6: 41
pmid: 17980048
137 YXue, Z Xing, AIBolstad, TEVan Dyke, KMustafa. Co-culture of human bone marrow stromal cells with endothelial cells alters gene expression profiles. Int J Artif Organs 2013; 36(9): 650–662
https://doi.org/10.5301/ijao.5000229 pmid: 23918270
138 LJNesti, EJ Caterson, WJLi, RChang, TDMcCann, JBHoek, RSTuan. TGF-β1 calcium signaling in osteoblasts. J Cell Biochem 2007; 101(2): 348–359
https://doi.org/10.1002/jcb.21180 pmid: 17211850
139 AStahl, A Wenger, HWeber, GBStark, HGAugustin, GFinkenzeller. Bi-directional cell contact-dependent regulation of gene expression between endothelial cells and osteoblasts in a three-dimensional spheroidal coculture model. Biochem Biophys Res Commun 2004; 322(2): 684–692
https://doi.org/10.1016/j.bbrc.2004.07.175 pmid: 15325284
140 MISantos, RE Unger, RASousa, RLReis, CJKirkpatrick. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 2009; 30(26): 4407–4415
https://doi.org/10.1016/j.biomaterials.2009.05.004 pmid: 19487022
141 EDohle, S Fuchs, MKolbe, AHofmann, HSchmidt, CJKirkpatrick. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 2010; 16(4): 1235–1237
https://doi.org/10.1089/ten.tea.2009.0493 pmid: 19886747
142 CColnot. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 2009; 24(2): 274–282
https://doi.org/10.1359/jbmr.081003 pmid: 18847330
143 DChen, X Zhang, YHe, JLu, H Shen, YJiang, CZhang, BZeng. Co-culturing mesenchymal stem cells from bone marrow and periosteum enhances osteogenesis and neovascularization of tissue-engineered bone. J Tissue Eng Regen Med 2012; 6(10): 822–832
https://doi.org/10.1002/term.489 pmid: 22072318
144 DChen, H Shen, YHe, YChen, Q Wang, JLu, YJiang. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Mol Med Rep 2015; 11(2): 1111–1119
https://doi.org/10.3892/mmr.2014.2883 pmid: 25373389
145 JSPark, KH Park. Light enhanced bone regeneration in an athymic nude mouse implanted with mesenchymal stem cells embedded in PLGA microspheres. Biomater Res 2016; 20(1): 4
https://doi.org/10.1186/s40824-016-0051-9 pmid: 26893909
146 LWu, X Zhao, BHe, JJiang, XJXie, L Liu. The possible roles of biological bone constructed with peripheral blood derived EPCs and BMSCs in osteogenesis and angiogenesis. Biomed Res Int. 2016; 2016:8168943
147 JNFisher, GM Peretti, CScotti. Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int 2016; 2016:9352598
148 RIDmitrieva, IR Minullina, AABilibina, OVTarasova, SVAnisimov, AYZaritskey. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities. Cell Cycle 2012; 11(2): 377–383
https://doi.org/10.4161/cc.11.2.18858 pmid: 22189711
149 JBrocher, P Janicki, PVoltz, ESeebach, ENeumann, UMueller-Ladner, WRichter. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Res 2013; 11(3): 1393–1406
https://doi.org/10.1016/j.scr.2013.07.008 pmid: 24140198
150 GKSándor, J Numminen, JWolff, TThesleff, AMiettinen, VJTuovinen, BMannerström, MPatrikoski, RSeppänen, SMiettinen, MRautiainen, JÖhman. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014; 3(4): 530–540
https://doi.org/10.5966/sctm.2013-0173 pmid: 24558162
151 LTKuhn, Y Liu, NLBoyd, JEDennis, XJiang, XXin, LF Charles, LWang, HLAguila, DWRowe, ACLichtler, AJGoldberg. Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 2014; 20(1-2): 365–377
https://doi.org/10.1089/ten.tea.2013.0321 pmid: 23952622
152 BLevi, JS Hyun, DTMontoro, DDLo, CK Chan, SHu, NSun, M Lee, MGrova, AJConnolly, JCWu, GC Gurtner, ILWeissman, DCWan, MT Longaker. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S A 2012; 109(50): 20379–20384
https://doi.org/10.1073/pnas.1218052109 pmid: 23169671
153 MMathieu, S Rigutto, AIngels, DSpruyt, NStricwant, IKharroubi, VAlbarani, MJayankura, JRasschaert, EBastianelli, VGangji. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone 2013; 53(2): 391–398
https://doi.org/10.1016/j.bone.2013.01.005 pmid: 23318974
154 YYamada, S Nakamura, KIto, TSugito, RYoshimi, TNagasaka, MUeda. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 2010; 16(6): 1891–1900
https://doi.org/10.1089/ten.tea.2009.0732 pmid: 20067397
155 ERBalmayor. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015; 94: 13–27
https://doi.org/10.1016/j.addr.2015.04.022 pmid: 25959428
156 JMassagué, D Wotton. Transcriptional control by the TGF-β/Smad signaling system. EMBO J 2000; 19(8): 1745–1754 PMID:10775259
https://doi.org/10.1093/emboj/19.8.1745
157 MEJoyce, S Jingushi, MEBolander. Transforming growth factor-β in the regulation of fracture repair. Orthop Clin North Am 1990; 21(1): 199–209
pmid: 2296458
158 MLind, B Schumacker, KSøballe, JKeller, FMelsen, CBünger. Transforming growth factor-β enhances fracture healing in rabbit tibiae. Acta Orthop Scand 1993; 64(5): 553–556
https://doi.org/10.3109/17453679308993691 pmid: 8237323
159 MACritchlow, YS Bland, DEAshhurst. The effect of exogenous transforming growth factor-β 2 on healing fractures in the rabbit. Bone 1995; 16(5): 521–527
https://doi.org/10.1016/8756-3282(95)00085-R pmid: 7654467
160 NTamai, A Myoui, MHirao, TKaito, TOchi, J Tanaka, KTakaoka, HYoshikawa. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage 2005; 13(5): 405–417
https://doi.org/10.1016/j.joca.2004.12.014 pmid: 15882564
161 KVrijens, W Lin, JCui, DFarmer, JLow, E Pronier, FYZeng, AAShelat, KGuy, MR Taylor, TChen, MFRoussel. Identification of small molecule activators of BMP signaling. PLoS One 2013; 8(3): e59045
https://doi.org/10.1371/journal.pone.0059045 pmid: 23527084
162 ABandyopadhyay, PS Yadav, PPrashar. BMP signaling in development and diseases: a pharmacological perspective. Biochem Pharmacol 2013; 85(7): 857–864
https://doi.org/10.1016/j.bcp.2013.01.004 pmid: 23333766
163 EBergeron, E Leblanc, ODrevelle, RGiguère, SBeauvais, GGrenier, NFaucheux. The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 2012; 18(3-4): 342–352
https://doi.org/10.1089/ten.tea.2011.0008 pmid: 21902464
164 YTakahashi, M Yamamoto, KYamada, OKawakami, YTabata. Skull bone regeneration in nonhuman primates by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Eng 2007; 13(2): 293–300
https://doi.org/10.1089/ten.2006.0088 pmid: 17504062
165 PAZuk, M Zhu, PAshjian, DADe Ugarte, JIHuang, HMizuno, ZCAlfonso, JKFraser, PBenhaim, MHHedrick. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279–4295
https://doi.org/10.1091/mbc.E02-02-0105 pmid: 12475952
166 JWang, Y Zheng, JZhao, TLiu, L Gao, ZGu, GWu. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation. J Clin Periodontol 2012; 39(1): 98–105
https://doi.org/10.1111/j.1600-051X.2011.01807.x pmid: 22092868
167 XHe, Y Liu, XYuan, LLu. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One 2014; 9(8): e104061
https://doi.org/10.1371/journal.pone.0104061 pmid: 25084008
168 JLi, J Hong, QZheng, XGuo, S Lan, FCui, HPan, Z Zou, CChen. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res 2011; 29(11): 1745–1752
https://doi.org/10.1002/jor.21439 pmid: 21500252
169 MLind. Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl 1998; 283: 2–37
pmid: 9856074
170 TKato, H Kawaguchi, KHanada, LAoyama, YHiyama, TNakamura, KKu-zutani, MTamura, TKurokawa, KNakamura. Single local injection of re-combinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res 1998; 16: 654–659
https://doi.org/10.1002/jor.1100160605 pmid: 9877388
171 ZLiu, KJ Lavine, IHHung, DMOrnitz. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol 2007; 302(1): 80–91
https://doi.org/10.1016/j.ydbio.2006.08.071 pmid: 17014841
172 GJSchmid, C Kobayashi, LJSandell, DMOrnitz. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn 2009; 238(3): 766–774
https://doi.org/10.1002/dvdy.21882 pmid: 19235733
173 BBehr, P Leucht, MTLongaker, NQuarto. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A 2010; 107(26): 11853–11858
https://doi.org/10.1073/pnas.1003317107 pmid: 20547837
174 BBak, PH Jørgensen, TTAndreassen. Dose response of growth hormone on fracture healing in the rat. Acta Orthop Scand 1990; 61(1): 54–57
https://doi.org/10.3109/17453679008993067 pmid: 2336953
175 SRThaller, A Dart, HTesluk. The effects of insulin-like growth factor-1 on critical-size calvarial defects in Sprague-Dawley rats. Ann Plast Surg 1993; 31(5): 429–433
https://doi.org/10.1097/00000637-199311000-00007 pmid: 8285528
176 CESegar, ME Ogle, EABotchwey. Regulation of angiogenesis and bone regeneration with natural and synthetic small molecules. Curr Pharm Des 2013; 19(19): 3403–3419
https://doi.org/10.2174/1381612811319190007 pmid: 23432670
177 JStreet, M Bao, LdeGuzman, SBunting, FVPeale Jr, NFerrara, HSteinmetz, JHoeffel, JLCleland, ADaugherty, Nvan Bruggen, HPRedmond, RACarano, EHFilvaroff. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 2002; 99(15): 9656–9661
https://doi.org/10.1073/pnas.152324099 pmid: 12118119
178 PJBouletreau, SM Warren, JASpector, ZMPeled, RPGerrets, JAGreenwald, MTLongaker. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 2002; 109(7): 2384–2397
https://doi.org/10.1097/00006534-200206000-00033 pmid: 12045566
179 EZelzer, W McLean, YSNg, NFukai, AMReginato, SLovejoy, PAD’Amore, BROlsen. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 2002; 129(8): 1893–1904
pmid: 11934855
180 FCui, X Wang, XLiu, ASDighe, GBalian, QCui. VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells. Growth Factors 2010; 28(5): 306–317
https://doi.org/10.3109/08977194.2010.484423 pmid: 20497064
181 IBab, D Gazit, MChorev, AMuhlrad, AShteyer, ZGreenberg, MNamdar, AKahn. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J 1992; 11(5): 1867–1873
pmid: 1582415
182 NGabarin, H Gavish, AMuhlrad, YCChen, MNamdar-Attar, RANissenson, MChorev, IBab. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. J Cell Biochem 2001; 81(4): 594–603
https://doi.org/10.1002/jcb.1083 pmid: 11329614
183 GAn, Z Xue, BZhang, QKDeng, YSWang, SCLv. Expressing osteogenic growth peptide in the rabbit bone mesenchymal stem cells increased alkaline phosphatase activity and enhanced the collagen accumulation. Eur Rev Med Pharmacol Sci 2014; 18(11): 1618–1624
pmid: 24943972
184 MABrager, MJ Patterson, JFConnolly, ZNevo. Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res 2000; 18(1): 133–139
https://doi.org/10.1002/jor.1100180119 pmid: 10716289
185 MShuqiang, W Kunzheng, DXiaoqiang, WWei, Z Mingyu, WDaocheng. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits. J Plast Reconstr Aesthet Surg 2008; 61(12): 1558–1560
https://doi.org/10.1016/j.bjps.2008.03.040 pmid: 18676213
186 RLJilka. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 2007; 40(6): 1434–1446
https://doi.org/10.1016/j.bone.2007.03.017 pmid: 17517365
187 TManabe, S Mori, TMashiba, YKaji, K Iwata, SKomatsubara, ASeki, YX Sun, TYamamoto. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 2007; 40(6): 1475–1482
https://doi.org/10.1016/j.bone.2007.01.015 pmid: 17369013
188 DEKomatsu, KA Brune, HLiu, ALSchmidt, BHan, QQ Zeng, XYang, JSNunes, YLu, AG Geiser, YLMa, JAWolos, MSWestmore, MSato. Longitudinal in vivo analysis of the region-specific efficacy of parathyroid hormone in a rat cortical defect model. Endocrinology 2009; 150(4): 1570–1579
https://doi.org/10.1210/en.2008-0814 pmid: 19022894
189 REJung, DL Cochran, ODomken, RSeibl, AAJones, DBuser, CHHammerle. The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res 2007; 18(3): 319–325
https://doi.org/10.1111/j.1600-0501.2007.01342.x pmid: 17386063
190 LAKaback, Y Soung, ANaik, GGeneau, EMSchwarz, RNRosier, RJO’Keefe, HDrissi. Teriparatide (1-34 human PTH) regulation of osterix during fracture repair. J Cell Biochem 2008; 105(1): 219–226
https://doi.org/10.1002/jcb.21816 pmid: 18494002
191 PAspenberg, HK Genant, TJohansson, AJNino, KSee, K Krohn, PA García-Hernández, CPRecknor, TAEinhorn, GPDalsky, BHMitlak, AFierlinger, MCLakshmanan. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010; 25(2): 404–414
https://doi.org/10.1359/jbmr.090731 pmid: 19594305
192 DGReynolds, S Shaikh, MOPapuga, ALLerner, RJO’Keefe, EMSchwarz, HAAwad. muCT-based measurement of cortical bone graft-to-host union. J Bone Miner Res 2009; 24(5): 899–907
https://doi.org/10.1359/jbmr.081232 pmid: 19063685
193 KJManton, DFM Leong, SMCool, VNurcombe. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 2007; 25(11): 2845–2854
https://doi.org/10.1634/stemcells.2007-0065 pmid: 17702986
194 YJChoi, JY Lee, JHPark, JBPark, JSSuh, YS Choi, SJLee, CPChung, YJPark. The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 2010; 31(28): 7226–7238
https://doi.org/10.1016/j.biomaterials.2010.05.022 pmid: 20621352
195 JYLee, JE Choo, HJPark, JBPark, SCLee, I Jo, SJLee, CPChung, YJPark. Injectable gel with synthetic collagen-binding peptide for enhanced osteogenesis in vitro and in vivo. Biochem Biophys Res Commun 2007; 357(1): 68–74
https://doi.org/10.1016/j.bbrc.2007.03.106 pmid: 17418806
196 JNYewle, DA Puleo, LGBachas. Bifunctional bisphosphonates for delivering PTH (1-34) to bone mineral with enhanced bioactivity. Biomaterials 2013; 34(12): 3141–3149
https://doi.org/10.1016/j.biomaterials.2013.01.059 pmid: 23369219
197 ARezania, KE Healy. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 1999; 15(1): 19–32
https://doi.org/10.1021/bp980083b pmid: 9933510
198 KWLo, KM Ashe, HMKan, CTLaurencin. The role of small molecules in musculoskeletal regeneration. Regen Med 2012; 7(4): 535–549
https://doi.org/10.2217/rme.12.33 pmid: 22817627
199 ICTai, YH Wang, CHChen, SCChuang, JKChang, MLHo. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation. Int J Nanomedicine 2015; 10: 5881–5894
pmid: 26451103
200 SRuiz-Gaspa, X Nogues, AEnjuanes, JCMonllau, JBlanch, RCarreras, LMellibovsky, DGrinberg, SBalcells, ADíez-Perez, JPedro-Botet. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cell Biochem 2007; 101(6): 1430–1438
https://doi.org/10.1002/jcb.21259 pmid: 17252541
201 YMoriyama, Y Ayukawa, YOgino, IAtsuta, MTodo, Y Takao, KKoyano. Local application of fluvastatin improves peri-implant bone quantity and mechanical properties: a rodent study. Acta Biomater 2010; 6(4): 1610–1618
https://doi.org/10.1016/j.actbio.2009.10.045 pmid: 19887121
202 KWLo, BD Ulery, HMKan, KMAshe, CTLaurencin. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. J Tissue Eng Regen Med 2014; 8(9): 728–736
https://doi.org/10.1002/term.1573 pmid: 22815259
203 ERBalmayor. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015; 94: 13–27
https://doi.org/10.1016/j.addr.2015.04.022 pmid: 25959428
204 KWPark, H Waki, WKKim, BSDavies, SGYoung, FParhami, PTontonoz. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Biol 2009; 29(14): 3905–3914
https://doi.org/10.1128/MCB.00002-09 pmid: 19433444
205 JZhao, S Ohba, MShinkai, UIChung, TNagamune. Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 2008; 369(2): 444–448
https://doi.org/10.1016/j.bbrc.2008.02.054 pmid: 18295595
206 KNakajima, Y Komiyama, HHojo, SOhba, F Yano, NNishikawa, SIhara, HAburatani, TTakato, UIChung. Enhancement of bone formation ex vivo and in vivo by a helioxanthin-derivative. Biochem Biophys Res Commun 2010; 395(4): 502–508
https://doi.org/10.1016/j.bbrc.2010.04.041 pmid: 20382113
207 VSSalazar, LW Gamer, VRosen. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 2016; 12(4): 203–221
https://doi.org/10.1038/nrendo.2016.12 pmid: 26893264
208 XWu, S Ding, QDing, NSGray, PGSchultz. A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 2002; 124(49): 14520–14521
https://doi.org/10.1021/ja0283908 pmid: 12465946
209 RBCorcoran, MP Scott. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc Natl Acad Sci USA 2006; 103(22): 8408–8413
https://doi.org/10.1073/pnas.0602852103 pmid: 16707575
210 AWJames. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013; 2013: 684736
211 SSinha, JK Chen. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol 2006; 2(1): 29–30
https://doi.org/10.1038/nchembio753 pmid: 16408088
212 KGellynck, R Shah, MParkar, AYoung, PBuxton, PBrett. Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bone 2013; 57(2): 405–412
https://doi.org/10.1016/j.bone.2013.09.012 pmid: 24076022
213 CMAmantea, WK Kim, VMeliton, STetradis, FParhami. Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem 2008; 105(2): 424–436
https://doi.org/10.1002/jcb.21840 pmid: 18613030
214 TLAghaloo, CM Amantea, CMCowan, JARichardson, BMWu, F Parhami, STetradis. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J Orthop Res 2007; 25(11): 1488–1497
https://doi.org/10.1002/jor.20437 pmid: 17568450
215 FStappenbeck, W Xiao, MEpperson, MRiley, APriest, DHuang, KNguyen, MEJung, RSThies, FFarouz. Novel oxysterols activate the Hedgehog pathway and induce osteogenesis. Bioorg Med Chem Lett 2012; 22(18): 5893–5897
https://doi.org/10.1016/j.bmcl.2012.07.073 pmid: 22901899
216 RSiddappa, A Martens, JDoorn, ALeusink, COlivo, RLicht, Lvan Rijn, CGaspar, RFodde, FJanssen, Cvan Blitterswijk, Jde Boer. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci U S A 2008; 105(20): 7281–7286
https://doi.org/10.1073/pnas.0711190105 pmid: 18490653
217 KWHLo, HM Kan, KMAshe, CTLaurencin. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med 2012; 6(1): 40–48
https://doi.org/10.1002/term.395 pmid: 21312339
218 KWLo, HM Kan, KAGagnon, CTLaurencin. One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for in vitro angiogenesis and osteoblastic differentiation. J Tissue Eng Regen Med 2016; 10(10): 867–875
https://doi.org/10.1002/term.1839 pmid: 24493289
219 MIshii, JG Egen, FKlauschen, MMeier-Schellersheim, YSaeki, JVacher, RLProia, RNGermain. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 2009; 458(7237): 524–528
https://doi.org/10.1038/nature07713 pmid: 19204730
220 CEPetrie Aronin, LSSefcik, SSTholpady, ATholpady, KWSadik, TLMacdonald, SMPeirce, BRWamhoff, KRLynch, RCOgle, EABotchwey. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng Part A 2010; 16(6): 1801–1809
https://doi.org/10.1089/ten.tea.2009.0539 pmid: 20038198
221 CEPetrie Aronin, SJShin, KBNaden, PDRios Jr, LSSefcik, SRZawodny, NDBagayoko, QCui, Y Khan, EABotchwey. The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 2010; 31(25): 6417–6424
https://doi.org/10.1016/j.biomaterials.2010.04.061 pmid: 20621764
222 KGellynck, EA Neel, HLi, NMardas, NDonos, PBuxton, AMYoung. Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomater 2011; 7(6): 2672–2677
https://doi.org/10.1016/j.actbio.2011.02.033 pmid: 21354477
223 YQi, T Zhao, WYan, KXu, Z Shi, JWang. Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model. Cytotherapy 2013; 15(1): 44–56
https://doi.org/10.1016/j.jcyt.2012.10.006 pmid: 23260085
224 YMaeda, H Hojo, NShimohata, SChoi, K Yamamoto, TTakato, UIChung, SOhba. Bone healing by sterilizable calcium phosphate tetrapods eluting osteogenic molecules. Biomaterials 2013; 34(22): 5530–5537
https://doi.org/10.1016/j.biomaterials.2013.03.089 pmid: 23623228
225 SOhba, K Nakajima, YKomiyama, FKugimiya, KIgawa, KItaka, TMoro, K Nakamura, HKawaguchi, TTakato, UIChung. A novel osteogenic helioxanthin-derivative acts in a BMP-dependent manner. Biochem Biophys Res Commun 2007; 357(4): 854–860
https://doi.org/10.1016/j.bbrc.2007.03.173 pmid: 17451649
226 AChatterjea, VL LaPointe, JAlblas, SChatterjea, CAvan Blitterswijk, Jde Boer. Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. J Cell Mol Med 2014; 18(1): 134–142
https://doi.org/10.1111/jcmm.12172 pmid: 24237965
227 SGhadakzadeh, M Mekhail, AAoude, RHamdy, MTabrizian. Small players ruling the hard game: siRNA in bone regeneration. J Bone Miner Res 2016; 31(3): 475–487
https://doi.org/10.1002/jbmr.2816 pmid: 26890411
228 LHong, N Wei, VJoshi, YYu, N Kim, YKrishnamachari, QZhang, AKSalem. Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A 2012; 18(7-8): 775–784
https://doi.org/10.1089/ten.tea.2011.0432 pmid: 21988716
229 YWang, KK Tran, HShen, DWGrainger. Selective local delivery of RANK siRNA to bone phagocytes using bone augmentation biomaterials. Biomaterials 2012; 33(33): 8540–8547
https://doi.org/10.1016/j.biomaterials.2012.07.039 pmid: 22951320
230 YZhang, L Wei, RJMiron, BShi, Z Bian. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J Bone Miner Res 2015; 30(2): 286–296
https://doi.org/10.1002/jbmr.2322 pmid: 25088728
231 YZhang, L Wei, RJMiron, QZhang, ZBian. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d. J Dent Res 2014; 93(11): 1095–1100
https://doi.org/10.1177/0022034514552676 pmid: 25252878
232 ALJackson, PS Linsley. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010; 9(1): 57–67
https://doi.org/10.1038/nrd3010 pmid: 20043028
233 KDHankenson, M Dishowitz, CGray, MSchenker. Angiogenesis in bone regeneration. Injury 2011; 42(6): 556–561
https://doi.org/10.1016/j.injury.2011.03.035 pmid: 21489534
234 TOzdemir, AM Higgins, JLBrown. Osteoinductive biomaterial geometries for bone regenerative engineering. Curr Pharm Des 2013; 19(19): 3446–3455
https://doi.org/10.2174/1381612811319190010 pmid: 23432675
235 BBMandal, A Grinberg, ESGil, BPanilaitis, DLKaplan. High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci USA 2012; 109(20): 7699–7704
https://doi.org/10.1073/pnas.1119474109 pmid: 22552231
236 FJO’Brien, BA Harley, IVYannas, LJGibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005; 26(4): 433–441
https://doi.org/10.1016/j.biomaterials.2004.02.052 pmid: 15275817
237 LGSicchieri, GE Crippa, PTde Oliveira, MMBeloti, ALRosa. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. J Tissue Eng Regen Med 2012; 6(2): 155–162
https://doi.org/10.1002/term.422 pmid: 21446054
238 ALZajac, DE Discher. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling. Curr Opin Cell Biol 2008; 20(6): 609–615
https://doi.org/10.1016/j.ceb.2008.09.006 pmid: 18926907
239 AMYousefi, ME Hoque, RGPrasad, NUth. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 2015; 103(7): 2460–2481
https://doi.org/10.1002/jbm.a.35356 pmid: 25345589
240 RChapanian, BG Amsden. Combined and sequential delivery of bioactive VEGF165 and HGF from poly(trimethylene carbonate) based photo-cross-linked elastomers. J Control Release 2010; 143(1): 53–63
https://doi.org/10.1016/j.jconrel.2009.11.025 pmid: 19961885
[1] Ling Wang, Lining Wang, Xing Fan, Wei Tang, Jiong Hu. Fludarabine and intravenous busulfan conditioning with post-transplantation cyclophosphamide for allogeneic peripheral stem cell transplantation for adult patients with lymphoid malignancies: a prospective single-arm phase II study[J]. Front. Med., 2021, 15(1): 108-115.
[2] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
[3] Xuran Chu, Chengshui Chen, Chaolei Chen, Jin-San Zhang, Saverio Bellusci, Xiaokun Li. Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors[J]. Front. Med., 2020, 14(3): 262-272.
[4] Xiaolin Fan, Yanzhen Xiong, Yuan Wang. A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications[J]. Front. Med., 2019, 13(5): 531-539.
[5] Lijuan Hu, Qi Wang, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Kaiyan Liu, Hui Wang, Xiaojun Huang, Xiaodong Mo. Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(4): 492-503.
[6] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Minimal residual disease-directed immunotherapy for high-risk myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(3): 354-364.
[7] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Interferon-α salvage treatment is effective for patients with acute leukemia/myelodysplastic syndrome with unsatisfactory response to minimal residual disease-directed donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(2): 238-249.
[8] Bo Lei, Baolin Guo, Kunal J. Rambhia, Peter X. Ma. Hybrid polymer biomaterials for bone tissue regeneration[J]. Front. Med., 2019, 13(2): 189-201.
[9] Qiming Zhai, Zhiwei Dong, Wei Wang, Bei Li, Yan Jin. Dental stem cell and dental tissue regeneration[J]. Front. Med., 2019, 13(2): 152-159.
[10] Shihua Wang, Rongjia Zhu, Hongling Li, Jing Li, Qin Han, Robert Chunhua Zhao. Mesenchymal stem cells and immune disorders: from basic science to clinical transition[J]. Front. Med., 2019, 13(2): 138-151.
[11] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[12] Meng Lv, Yingjun Chang, Xiaojun Huang. Everyone has a donor: contribution of the Chinese experience to global practice of haploidentical hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(1): 45-56.
[13] Yun Zhang, Robert A. Weinberg. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front. Med., 2018, 12(4): 361-373.
[14] Fei Gao, Jingyu Chen, Dong Wei, Bo Wu, Min Zhou. Lung transplantation for bronchiolitis obliterans syndrome after allogenic hematopoietic stem cell transplantation[J]. Front. Med., 2018, 12(2): 224-228.
[15] Xuying Pei, Xiangyu Zhao, Yu Wang, Lanping Xu, Xiaohui Zhang, Kaiyan Liu, Yingjun Chang, Xiaojun Huang. Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts[J]. Front. Med., 2018, 12(2): 153-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed