Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (4) : 427-437    https://doi.org/10.1007/s11684-018-0672-6
REVIEW
Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects
Zhen Wang, Jianhui Wu, Xiuyun Tian, Chunyi Hao()
Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato–Pancreato–Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
 Download: PDF(293 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Desmoid-type fibromatosis (DF) is a rare monoclonal fibroblastic proliferation that is characterized by locally infiltrative but rarely metastatic lesions. Tyrosine kinase and γ-secretase inhibitors are primarily used in the targeted therapy of DF. The use of these drugs, however, is mainly based on the recommendations of retrospective studies with small sample sizes. Previous studies that focused on the mechanism, efficacy, and safety of targeted therapy for DF were reviewed to provide references for clinical applications and research. The efficacy and safety of targeted therapy were compared with those of other systemic therapy options. Targeted therapy does not provide considerable advantages in efficacy and safety over other medical treatments and is usually applied after the failure of antihormonal therapies, nonsteroidal anti-inflammatory drugs, and chemotherapy. Further studies are required to explore the mechanism, indications, and appropriate drug dosage of the targeted therapy of DF.

Keywords targeted therapy      desmoid-type fibromatosis      tyrosine kinase inhibitor      γ-secretase inhibitor     
Corresponding Author(s): Chunyi Hao   
Just Accepted Date: 28 December 2018   Online First Date: 22 February 2019    Issue Date: 02 August 2019
 Cite this article:   
Zhen Wang,Jianhui Wu,Xiuyun Tian, et al. Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects[J]. Front. Med., 2019, 13(4): 427-437.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0672-6
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I4/427
Treatment protocols Study Patient number Overall response rate PFS Grade 3–4 side effects/dose reduction due to side effects Characteristics
Imatinib Mace et al. (2002) [26] 2 100% 100% (FUT: 9 and 11 months) 0%
Heinrich et al. (2006) [28] 19 16% 6-M 53%; 12-M 37%; 36-M 12% Majority
Wcislo et al. (2007) [29] 1 100% 100% (FUT 24-M) 0%
Chugh et al. (2010) [30] 51 6% 6-M 84%; 12-M 66%; 36-M 58%; 60-M 52% 39%
Penel et al. (2011) [20] 40 10% 6-M 80%; 12-M 67%; 24-M 55%; 36-M 40% 45%
Kasper et al. (2017) [19] 38 19% 12-M 59%; 24-M 45% 13%
Total# 151 13% 33%
Nilotinib Kasper et al. (2017) [19] 8 3-M 88% 13% Had the potential to stabilize DF after the failure of imatinib treatment
Pazopanib Martin-Liberal et al. (2013) [39] 2 50% 100% * 50%
Szucs et al. (2017) [22] 8 38% 6-M 75%; 12-M 75%; 36-M 12.5% 13%
Total# 10 40% 20%
Sorafenib Gounder et al. (2011) [40] 26 25% 6-M 95% 15% Clinical improvement was noted within 2 weeks
Sunitinib Skubitz et al. (2009) [24] 1 100% 36-M 100% 0%
PF-903084014 Messersmith et al. (2015) [53] 7 71% Response time ranged from 1.74+ months to 24+ months 43%
Kummar et al. (2017) [21] 17 29% 94% (median FUT>25 months) 47%
Total# 24 42% 46%
Antihormone and/or NSAIDS Hansmann et al. (2003) [70] 27 37% 50%* 0% 30% of the cases developed ovarian cysts; 22% CR
Tanaka et al. (2008) [80] 1 100% 100%* 0%
Bocale et al. (2011) [81] 168 50% 80%* 0%
Quast et al. (2016) [68] 134 33% 85%* 0%
Total# 330 42% 0%
Anthracycline-based regimens Gega et al. [74] 7 100% Average PFS was 74 months (32.5–107.5) 43% 43% CR
Bertagnolli et al. [79] 10 90% 90%*
Camargo et al. [73] 35 37% 88%* 6%
Garbay et al. [76] 13 54% 100% (median PFS was 40.8 months)
Total# 65 55% 12%
Methotrexate and/or vinblastine Weisset al. [77] 15 60% 87%* 20%
Azzarelli et al. [78] 30 40% 6-M 96%; 12-M 92%; 36-M 80%; 60-M 67% 13%
Bertagnolli et al. [79] 4 25% 75%*
Camargo et al. [73] 22 27% 82%*
Garbay et al. [76] 27 15% 67% (median PFS 40.8 months)
Li et al. [82] 71 35% 24-M 80%; 36-M 68%; 60-M 36%
Total# 169 34% 16%
Tab.1  Summary of previous studies on systemic therapy for desmoid-type fibromatosis
Treatment protocols Overall response Grade 3–4 side effects
N Yes No P N Yes No P
Antihormone and/or NSAIDS 330 139 (42%) 191 (58%) 330 0 (0%) 330 (100%)
Imatinib 151 20 (13%) 131 (87%) <0.001 132 43 (33%) 89 (67%) <0.001
Nilotinib 8 8 1 (13%) 7 (87%) 0.024
Pazopanib 10 4 (40%) 6 (60%) 0.893 10 2 (20%) 8 (80%) 0.001
Sorafenib 26 7 (25%) 19 (75%) 0.129 26 4 (15%) 22 (85%) <0.001
PF-903084014 24 10 (42%) 14 (58%) 0.965 24 11 (46%) 13 (54%) <0.001
Tab.2  Comparison of the overall response rates and grade 3–4 side effect rates of antihormone and/or NSAIDS therapy and various targeted therapies
Fig.1  Overall response rates of systemic therapies for DF (case number>5). The median overall response rates and ranges are shown in the figure. Overall response rate, the rate of the cases that showed DF shrinkage. NSAIDS, nonsteroidal anti-inflammatory drugs. DF, desmoid-type fibromatosis.
Fig.2  Rates of grade 3–4 side effects of systemic therapies for DF (case number>5). The median overall response rates and ranges are shown in the figure. NSAIDS, nonsteroidal anti-inflammatory drugs. DF, desmoid-type fibromatosis.
Fig.3  Overall response and grade 3–4 side effects of various systemic therapies. NSAIDS, nonsteroidal anti-inflammatory drugs. Overall response rate, the rate of the cases that showed DF shrinkage. *Grade 3–4 side effects occurred in none of the patients that underwent antihormone and/or NSAIDS therapy. **The overall response rate of nilotinib is unavailable. NSAIDS, nonsteroidal anti-inflammatory drugs. DF, desmoid-type fibromatosis.
Treatment protocols Overall response Grade 3–4 side effects
N Yes No P N Yes No P
Anthracycline-based regimens 65 36 (55%) 29 (45%) 42 5 (12%) 37 (88%)
Imatinib 151 20 (13%) 131 (87%) 0.001 132 43 (33%) 89 (67%) 0.009
Nilotinib 8 8 1 (13%) 7 (87%) 0.962
Pazopanib 10 4 (40%) 6 (60%) 0.570 10 2 (20%) 8 (80%) 0.874
Sorafenib 26 7 (25%) 19 (75%) 0.014 26 4 (15%) 22 (85%) 0.965
PF-903084014 24 10 (42%) 14 (58%) 0.250 24 11 (46%) 13 (54%) 0.002
Tab.3  Comparison of the overall response rates and grade 3–4 side effect rates of anthracycline-based regimens and various targeted therapies
Treatment protocols Overall response Grade 3–4 side effects
N Yes No P N Yes No P
Methotrexate and/or vinblastine 169 57 (34%) 112 (66%) 45 7 (16%) 38 (84%)
Imatinib 151 20 (13%) 131 (87%) <0.001 132 43 (33%) 89 (67%) 0.029
Nilotinib 8 8 1 (13%) 7 (87%) 1.000
Pazopanib 10 4 (40%) 6 (60%) 0.950 10 2 (20%) 8 (80%) 1.000
Sorafenib 26 7 (25%) 19 (75%) 0.492 26 4 (15%) 22 (85%) 1.000
PF-903084014 24 10 (42%) 14 (58%) 0.445 24 11 (46%) 13 (54%) 0.006
Tab.4  Comparison of the overall response rates and grade 3–4 side effect rates of methotrexate and/or vinblastine regimens and various targeted therapies
1 B Kasper, C Baumgarten, J Garcia, S Bonvalot, R Haas, F Haller, P Hohenberger, N Penel, C Messiou, WT van der Graaf, A Gronchi; Desmoid Working Group. An update on the management of sporadic desmoid-type fibromatosis: a European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG). Ann Oncol 2017; 28(10): 2399–2408
https://doi.org/10.1093/annonc/mdx323 pmid: 28961825
2 S Otero, EC Moskovic, DC Strauss, C Benson, AB Miah, K Thway, C Messiou. Desmoid-type fibromatosis. Clin Radiol 2015; 70(9): 1038–1045
https://doi.org/10.1016/j.crad.2015.04.015 pmid: 26162574
3 L Bertario, A Russo, P Sala, M Eboli, M Giarola, F D’amico, V Gismondi, L Varesco, MA Pierotti, P; Hereditary Colorectal Tumours Registry. Radice Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer 2001; 95(2): 102–107
https://doi.org/10.1002/1097-0215(20010320)95:2<102::AID-IJC1018>3.0.CO;2-8 pmid: 11241320
4 KM Skubitz. Biology and treatment of aggressive fibromatosis or desmoid tumor. Mayo Clin Proc 2017; 92(6): 947–964
https://doi.org/10.1016/j.mayocp.2017.02.012 pmid: 28578783
5 AJ Lazar, D Tuvin, S Hajibashi, S Habeeb, S Bolshakov, E Mayordomo-Aranda, CL Warneke, D Lopez-Terrada, RE Pollock, D Lev. Specific mutations in the β-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 2008; 173(5): 1518–1527
https://doi.org/10.2353/ajpath.2008.080475 pmid: 18832571
6 BA Alman, C Li, ME Pajerski, S Diaz-Cano, HJ Wolfe. Increased β-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997; 151(2): 329–334
pmid: 9250146
7 S Salas, F Chibon, T Noguchi, P Terrier, D Ranchere-Vince, P Lagarde, J Benard, S Forget, C Blanchard, J Dômont, S Bonvalot, L Guillou, A Leroux, A Mechine-Neuville, P Schöffski, M Laë, F Collin, O Verola, A Carbonnelle, L Vescovo, B Bui, V Brouste, H Sobol, A Aurias, JM Coindre. Molecular characterization by array comparative genomic hybridization and DNA sequencing of 194 desmoid tumors. Genes Chromosomes Cancer 2010; 49(6): 560–568
https://doi.org/10.1002/gcc.20766 pmid: 20232483
8 S Le Guellec, I Soubeyran, P Rochaix, T Filleron, A Neuville, I Hostein, JM Coindre. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol 2012; 25(12): 1551–1558
https://doi.org/10.1038/modpathol.2012.115 pmid: 22766794
9 C Colombo, R Miceli, AJ Lazar, F Perrone, RE Pollock, A Le Cesne, HH Hartgrink, AM Cleton-Jansen, J Domont, JV Bovée, S Bonvalot, D Lev, A Gronchi. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer 2013; 119(20): 3696–3702
https://doi.org/10.1002/cncr.28271 pmid: 23913621
10 DL van Broekhoven, C Verhoef, DJ Grünhagen, JM van Gorp, MA den Bakker, JW Hinrichs, CM de Voijs, T van Dalen. Prognostic value of CTNNB1 gene mutation in primary sporadic aggressive fibromatosis. Ann Surg Oncol 2015; 22(5): 1464–1470
https://doi.org/10.1245/s10434-014-4156-x pmid: 25341748
11 M Lacroix-Triki, FC Geyer, MB Lambros, K Savage, IO Ellis, AH Lee, JS Reis-Filho. β-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol 2010; 23(11): 1438–1448
https://doi.org/10.1038/modpathol.2010.141 pmid: 20693983
12 J Couture, A Mitri, R Lagace, R Smits, T Berk, HL Bouchard, R Fodde, B Alman, B Bapat. A germline mutation at the extreme 3′ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of β-catenin in the desmoid tumor. Clin Genet 2000; 57(3): 205–212
https://doi.org/10.1034/j.1399-0004.2000.570306.x pmid: 10782927
13 JC Harvey, SH Quan, JG Fortner. Gardner’s syndrome complicated by mesenteric desmoid tumors. Surgery 1979; 85(4): 475–477
pmid: 432809
14 C Colombo, R Miceli, C Le Péchoux, E Palassini, C Honoré, S Stacchiotti, O Mir, PG Casali, J Dômont, M Fiore, A Le Cesne, A Gronchi, S Bonvalot. Sporadic extra abdominal wall desmoid-type fibromatosis: surgical resection can be safely limited to a minority of patients. Eur J Cancer 2015; 51(2): 186–192
https://doi.org/10.1016/j.ejca.2014.11.019 pmid: 25500145
15 B Kasper, C Baumgarten, S Bonvalot, R Haas, F Haller, P Hohenberger, G Moreau, WT van der Graaf, A; Desmoid Working Group. Gronchi Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients’ and professionals’ expertise — a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer 2015; 51(2): 127–136
https://doi.org/10.1016/j.ejca.2014.11.005 pmid: 25434922
16 S Bonvalot, H Eldweny, V Haddad, F Rimareix, G Missenard, O Oberlin, D Vanel, P Terrier, JY Blay, A Le Cesne, C Le Péchoux. Extra-abdominal primary fibromatosis: aggressive management could be avoided in a subgroup of patients. Eur J Surg Oncol 2008; 34(4): 462–468
https://doi.org/10.1016/j.ejso.2007.06.006 pmid: 17709227
17 M Fiore, F Rimareix, L Mariani, J Domont, P Collini, C Le Péchoux, PG Casali, A Le Cesne, A Gronchi, S Bonvalot. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann Surg Oncol 2009; 16(9): 2587–2593
https://doi.org/10.1245/s10434-009-0586-2 pmid: 19568815
18 S Briand, O Barbier, D Biau, A Bertrand-Vasseur, F Larousserie, P Anract, F Gouin. Wait-and-see policy as a first-line management for extra-abdominal desmoid tumors. J Bone Joint Surg Am 2014; 96(8): 631–638
https://doi.org/10.2106/JBJS.M.00988 pmid: 24740659
19 B Kasper, V Gruenwald, P Reichardt, S Bauer, G Rauch, R Limprecht, M Sommer, A Dimitrakopoulou-Strauss, L Pilz, F Haller, P Hohenberger. Imatinib induces sustained progression arrest in RECIST progressive desmoid tumours: final results of a phase II study of the German Interdisciplinary Sarcoma Group (GISG). Eur J Cancer 2017; 76: 60–67
https://doi.org/10.1016/j.ejca.2017.02.001 pmid: 28282612
20 N Penel, A Le Cesne, BN Bui, D Perol, EG Brain, I Ray-Coquard, C Guillemet, C Chevreau, D Cupissol, S Chabaud, M Jimenez, F Duffaud, S Piperno-Neumann, L Mignot, JY Blay. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol 2011; 22(2): 452–457
https://doi.org/10.1093/annonc/mdq341 pmid: 20622000
21 S Kummar, G O’Sullivan Coyne, KT Do, B Turkbey, PS Meltzer, E Polley, PL Choyke, R Meehan, R Vilimas, Y Horneffer, L Juwara, A Lih, A Choudhary, SA Mitchell, LJ Helman, JH Doroshow, AP Chen. Clinical activity of the g-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol 2017; 35(14): 1561–1569
https://doi.org/10.1200/JCO.2016.71.1994 pmid: 28350521
22 Z Szucs, C Messiou, HH Wong, H Hatcher, A Miah, S Zaidi, WT van der Graaf, I Judson, RL Jones, C Benson. Pazopanib, a promising option for the treatment of aggressive fibromatosis. Anticancer Drugs 2017; 28(4): 421–426
https://doi.org/10.1097/CAD.0000000000000474 pmid: 28099210
23 C Brogsitter, D Faulhaber, J Kotzerke. Intraarterial treatment of GEP NET: (68)Ga-DOTATOC SUV cannot predict (90)Y-DOTATOC uptake. Clin Cancer Res 2011; 17(7): 2065
https://doi.org/10.1158/1078-0432.CCR-10-1970 pmid: 21447724
24 KM Skubitz, JC Manivel, DR Clohisy, JW Frolich. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother Pharmacol 2009; 64(3): 635–640
https://doi.org/10.1007/s00280-009-1010-0 pmid: 19404642
25 E Buchdunger, CL Cioffi, N Law, D Stover, S Ohno-Jones, BJ Druker, NB Lydon. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295(1): 139–145
pmid: 10991971
26 J Mace, J Sybil Biermann, V Sondak, C McGinn, C Hayes, D Thomas, L Baker. Response of extraabdominal desmoid tumors to therapy with imatinib mesylate. Cancer 2002; 95(11): 2373–2379
https://doi.org/10.1002/cncr.11029 pmid: 12436445
27 M Carroll, S Ohno-Jones, S Tamura, E Buchdunger, J Zimmermann, NB Lydon, DG Gilliland, BJ Druker. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90(12): 4947–4952
pmid: 9389713
28 MC Heinrich, GA McArthur, GD Demetri, H Joensuu, P Bono, R Herrmann, H Hirte, S Cresta, DB Koslin, CL Corless, S Dirnhofer, AT van Oosterom, Z Nikolova, S Dimitrijevic, JA Fletcher. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 2006; 24(7): 1195–1203
https://doi.org/10.1200/JCO.2005.04.0717 pmid: 16505440
29 G Wcislo, K Szarlej-Wcislo, C Szczylik. Control of aggressive fibromatosis by treatment with imatinib mesylate. A case report and review of the literature. J Cancer Res Clin Oncol 2007; 133(8): 533–538
https://doi.org/10.1007/s00432-007-0198-9 pmid: 17453242
30 R Chugh, JK Wathen, SR Patel, RG Maki, PA Meyers, SM Schuetze, DA Priebat, DG Thomas, JA Jacobson, BL Samuels, RS Benjamin, LH; Sarcoma Alliance for Research through Collaboration (SARC). Baker Efficacy of imatinib in aggressive fibromatosis: results of a phase II multicenter Sarcoma Alliance for Research through Collaboration (SARC) trial. Clin Cancer Res 2010; 16(19): 4884–4891
https://doi.org/10.1158/1078-0432.CCR-10-1177 pmid: 20724445
31 J Verweij, PG Casali, J Zalcberg, A LeCesne, P Reichardt, JY Blay, R Issels, A van Oosterom, PC Hogendoorn, M Van Glabbeke, R Bertulli, I Judson. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364(9440): 1127–1134
https://doi.org/10.1016/S0140-6736(04)17098-0 pmid: 15451219
32 JR Zalcberg, J Verweij, PG Casali, A Le Cesne, P Reichardt, JY Blay, M Schlemmer, M Van Glabbeke, M Brown, IR Judson; EORTC Soft Tissue and Bone Sarcoma Group, the Italian Sarcoma Group; Australasian Gastrointestinal Trials Group. Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 2005; 41(12): 1751–1757
https://doi.org/10.1016/j.ejca.2005.04.034 pmid: 16098458
33 CD Blanke, C Rankin, GD Demetri, CW Ryan, M von Mehren, RS Benjamin, AK Raymond, VH Bramwell, LH Baker, RG Maki, M Tanaka, JR Hecht, MC Heinrich, CD Fletcher, JJ Crowley, EC Borden. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 2008; 26(4): 626–632
https://doi.org/10.1200/JCO.2007.13.4452 pmid: 18235122
34 E Weisberg, P Manley, J Mestan, S Cowan-Jacob, A Ray, JD Griffin. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006; 94(12): 1765–1769
https://doi.org/10.1038/sj.bjc.6603170 pmid: 16721371
35 JY Blay, M von Mehren. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol 2011; 38(Suppl 1): S3–S9
https://doi.org/10.1053/j.seminoncol.2011.01.016 pmid: 21419934
36 PW Manley, N Stiefl, SW Cowan-Jacob, S Kaufman, J Mestan, M Wartmann, M Wiesmann, R Woodman, N Gallagher. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 2010; 18(19): 6977–6986
https://doi.org/10.1016/j.bmc.2010.08.026 pmid: 20817538
37 PW Manley, P Drueckes, G Fendrich, P Furet, J Liebetanz, G Martiny-Baron, J Mestan, J Trappe, M Wartmann, D Fabbro. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 2010; 1804(3): 445–453
https://doi.org/10.1016/j.bbapap.2009.11.008 pmid: 19922818
38 WT van der Graaf, JY Blay, SP Chawla, DW Kim, B Bui-Nguyen, PG Casali, P Schöffski, M Aglietta, AP Staddon, Y Beppu, A Le Cesne, H Gelderblom, IR Judson, N Araki, M Ouali, S Marreaud, R Hodge, MR Dewji, C Coens, GD Demetri, CD Fletcher, AP Dei Tos, P Hohenberger; EORTC Soft Tissue and Bone Sarcoma Group; PALETTE Study Group. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012; 379(9829): 1879–1886
https://doi.org/10.1016/S0140-6736(12)60651-5 pmid: 22595799
39 J Martin-Liberal, C Benson, H McCarty, K Thway, C Messiou, I Judson. Pazopanib is an active treatment in desmoid tumour/aggressive fibromatosis. Clin Sarcoma Res 2013; 3(1): 13
https://doi.org/10.1186/2045-3329-3-13 pmid: 24279994
40 MM Gounder, RA Lefkowitz, ML Keohan, DR D’Adamo, M Hameed, CR Antonescu, S Singer, K Stout, L Ahn, RG Maki. Activity of sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res 2011; 17(12): 4082–4090
https://doi.org/10.1158/1078-0432.CCR-10-3322 pmid: 21447727
41 GT Wong, D Manfra, FM Poulet, Q Zhang, H Josien, T Bara, L Engstrom, M Pinzon-Ortiz, JS Fine, HJ Lee, L Zhang, GA Higgins, EM Parker. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279(13): 12876–12882
https://doi.org/10.1074/jbc.M311652200 pmid: 14709552
42 SJ Pollack, H Lewis. Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs 2005; 6(1): 35–47
pmid: 15675602
43 DB Henley, KL Sundell, G Sethuraman, SA Dowsett, PC May. Safety profile of semagacestat, a γ-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin 2014; 30(10): 2021–2032
https://doi.org/10.1185/03007995.2014.939167 pmid: 24983746
44 LW Ellisen, J Bird, DC West, AL Soreng, TC Reynolds, SD Smith, J Sklar. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649–661
https://doi.org/10.1016/0092-8674(91)90111-B pmid: 1831692
45 AP Weng, AA Ferrando, W Lee, JP Morris 4th, LB Silverman, C Sanchez-Irizarry, SC Blacklow, AT Look, JC Aster. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306(5694): 269–271
https://doi.org/10.1126/science.1102160 pmid: 15472075
46 P Zagouras, S Stifani, CM Blaumueller, ML Carcangiu, S Artavanis-Tsakonas. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA 1995; 92(14): 6414–6418
https://doi.org/10.1073/pnas.92.14.6414 pmid: 7604005
47 Y Miyamoto, A Maitra, B Ghosh, U Zechner, P Argani, CA Iacobuzio-Donahue, V Sriuranpong, T Iso, IM Meszoely, MS Wolfe, RH Hruban, DW Ball, RM Schmid, SD Leach. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003; 3(6): 565–576
https://doi.org/10.1016/S1535-6108(03)00140-5 pmid: 12842085
48 V Rodilla, A Villanueva, A Obrador-Hevia, A Robert-Moreno, V Fernández-Majada, A Grilli, N López-Bigas, N Bellora, MM Albà, F Torres, M Duñach, X Sanjuan, S Gonzalez, T Gridley, G Capella, A Bigas, L Espinosa. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106(15): 6315–6320
https://doi.org/10.1073/pnas.0813221106 pmid: 19325125
49 HA Kim, BK Koo, JH Cho, YY Kim, J Seong, HJ Chang, YM Oh, DE Stange, JG Park, D Hwang, YY Kong. Notch1 counteracts WNT/b-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest 2012; 122(9): 3248–3259
https://doi.org/10.1172/JCI61216 pmid: 22863622
50 R Kopan, MX Ilagan. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2): 216–233
https://doi.org/10.1016/j.cell.2009.03.045 pmid: 19379690
51 J Yao, C Qian, T Shu, X Zhang, Z Zhao, Y Liang. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/b-catenin. Cancer Biol Ther 2013; 14(9): 833–839
https://doi.org/10.4161/cbt.25332 pmid: 23792588
52 JJ Arcaroli, KS Quackenbush, A Purkey, RW Powell, TM Pitts, S Bagby, AC Tan, B Cross, K McPhillips, EK Song, WM Tai, RA Winn, K Bikkavilli, M Vanscoyk, SG Eckhardt, WA Messersmith. Tumours with elevated levels of the Notch and Wnt pathways exhibit efficacy to PF-03084014, a g-secretase inhibitor, in a preclinical colorectal explant model. Br J Cancer 2013; 109(3): 667–675
https://doi.org/10.1038/bjc.2013.361 pmid: 23868008
53 WA Messersmith, GI Shapiro, JM Cleary, A Jimeno, A Dasari, B Huang, MN Shaik, R Cesari, X Zheng, JM Reynolds, PA English, KR McLachlan, KA Kern, PM LoRusso. A Phase I, dose-finding study in patients with advanced solid malignancies of the oral g-secretase inhibitor PF-03084014. Clin Cancer Res 2015; 21(1): 60–67
https://doi.org/10.1158/1078-0432.CCR-14-0607 pmid: 25231399
54 S Roussin, C Mazouni, F Rimareix, C Honoré, P Terrier, O Mir, J Dômont, C Le Péchoux, A Le Cesne, S Bonvalot. Toward a new strategy in desmoid of the breast? Eur J Surg Oncol 2015; 41(4): 571–576
https://doi.org/10.1016/j.ejso.2015.01.001 pmid: 25639193
55 S Okuno. The enigma of desmoid tumors. Curr Treat Options Oncol 2006; 7(6): 438–443
https://doi.org/10.1007/s11864-006-0019-4 pmid: 17032556
56 D Lev, D Kotilingam, C Wei, MT Ballo, GK Zagars, PW Pisters, AA Lazar, SR Patel, RS Benjamin, RE Pollock. Optimizing treatment of desmoid tumors. J Clin Oncol 2007; 25(13): 1785–1791
https://doi.org/10.1200/JCO.2006.10.5015 pmid: 17470870
57 MA Rodriguez-Bigas, MC Mahoney, CP Karakousis, NJ Petrelli. Desmoid tumors in patients with familial adenomatous polyposis. Cancer 1994; 74(4): 1270–1274
https://doi.org/10.1002/1097-0142(19940815)74:4<1270::AID-CNCR2820740415>3.0.CO;2-7 pmid: 7519966
58 MT Ballo, GK Zagars, A Pollack, PW Pisters, RA Pollack. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol 1999; 17(1): 158–167
https://doi.org/10.1200/JCO.1999.17.1.158 pmid: 10458229
59 A Gronchi, PG Casali, L Mariani, S Lo Vullo, M Colecchia, L Lozza, R Bertulli, M Fiore, P Olmi, M Santinami, J Rosai. Quality of surgery and outcome in extra-abdominal aggressive fibromatosis: a series of patients surgically treated at a single institution. J Clin Oncol 2003; 21(7): 1390–1397
https://doi.org/10.1200/JCO.2003.05.150 pmid: 12663732
60 JG Johnson, E Gilbert, B Zimmermann, AL Watne. Gardner’s syndrome, colon cancer, and sarcoma. J Surg Oncol 1972; 4(4): 354–362
https://doi.org/10.1002/jso.2930040406 pmid: 5083569
61 SA Leibel, WM Wara, DR Hill, EG Bovill Jr, AA de Lorimier, JH Beckstead, TL Phillips. Desmoid tumors: local control and patterns of relapse following radiation therapy. Int J Radiat Oncol Biol Phys 1983; 9(8): 1167–1171
https://doi.org/10.1016/0360-3016(83)90175-X pmid: 6409853
62 G Pignatti, G Barbanti-Bròdano, D Ferrari, F Gherlinzoni, F Bertoni, P Bacchini, E Barbieri, A Giunti, M Campanacci. Extraabdominal desmoid tumor. A study of 83 cases. Clin Orthop Relat Res 2000; (375): 207–213
https://doi.org/10.1097/00003086-200006000-00025 pmid: 10853171
63 MC Posner, MH Shiu, JL Newsome, SI Hajdu, JJ Gaynor, MF Brennan. The desmoid tumor. Not a benign disease. Arch Surg 1989; 124(2): 191–196
https://doi.org/10.1001/archsurg.1989.01410020061010 pmid: 2916941
64 JJ Reitamo. The desmoid tumor. IV. Choice of treatment, results, and complications. Arch Surg 1983; 118(11): 1318–1322
https://doi.org/10.1001/archsurg.1983.01390110066014 pmid: 6639341
65 A Sørensen, J Keller, OS Nielsen, OM Jensen. Treatment of aggressive fibromatosis: a retrospective study of 72 patients followed for 1−27 years. Acta Orthop Scand 2002; 73(2): 213–219
https://doi.org/10.1080/000164702753671830 pmid: 12079022
66 AM Crago, B Denton, S Salas, A Dufresne, JJ Mezhir, M Hameed, M Gonen, S Singer, MF Brennan. A prognostic nomogram for prediction of recurrence in desmoid fibromatosis. Ann Surg 2013; 258(2): 347–353
https://doi.org/10.1097/SLA.0b013e31828c8a30 pmid: 23532110
67 M Fiore, C Colombo, S Radaelli, D Callegaro, E Palassini, M Barisella, C Morosi, GG Baldi, S Stacchiotti, PG Casali, A Gronchi. Hormonal manipulation with toremifene in sporadic desmoid-type fibromatosis. Eur J Cancer 2015; 51(18): 2800–2807
https://doi.org/10.1016/j.ejca.2015.08.026 pmid: 26602014
68 DR Quast, R Schneider, E Burdzik, S Hoppe, G Möslein. Long-term outcome of sporadic and FAP-associated desmoid tumors treated with high-dose selective estrogen receptor modulators and sulindac: a single-center long-term observational study in 134 patients. Fam Cancer 2016; 15(1): 31–40
https://doi.org/10.1007/s10689-015-9830-z pmid: 26275868
69 T Desurmont, JH Lefèvre, C Shields, C Colas, E Tiret, Y Parc. Desmoid tumour in familial adenomatous polyposis patients: responses to treatments. Fam Cancer 2015; 14(1): 31–39
https://doi.org/10.1007/s10689-014-9760-1 pmid: 25315103
70 A Hansmann, C Adolph, T Vogel, A Unger, G Moeslein. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. Cancer 2004; 100(3): 612–620
https://doi.org/10.1002/cncr.11937 pmid: 14745880
71 JH Howard, RE Pollock. Intra-abdominal and abdominal wall desmoid fibromatosis. Oncol Ther 2016; 4(1): 57–72
https://doi.org/10.1007/s40487-016-0017-z pmid: 28261640
72 B Fisher, JP Costantino, DL Wickerham, CK Redmond, M Kavanah, WM Cronin, V Vogel, A Robidoux, N Dimitrov, J Atkins, M Daly, S Wieand, E Tan-Chiu, L Ford, N Wolmark. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998; 90(18): 1371–1388
https://doi.org/10.1093/jnci/90.18.1371 pmid: 9747868
73 VP de Camargo, ML Keohan, DR D’Adamo, CR Antonescu, MF Brennan, S Singer, LS Ahn, RG Maki. Clinical outcomes of systemic therapy for patients with deep fibromatosis (desmoid tumor). Cancer 2010; 116(9): 2258–2265
https://doi.org/10.1002/cncr.25089 pmid: 20187095
74 M Gega, H Yanagi, R Yoshikawa, M Noda, H Ikeuchi, K Tsukamoto, T Oshima, Y Fujiwara, N Gondo, K Tamura, J Utsunomiya, T Hashimoto-Tamaoki, T Yamamura. Successful chemotherapeutic modality of doxorubicin plus dacarbazine for the treatment of desmoid tumors in association with familial adenomatous polyposis. J Clin Oncol 2006; 24(1): 102–105
https://doi.org/10.1200/JCO.2005.02.1923 pmid: 16382119
75 A Constantinidou, RL Jones, M Scurr, O Al-Muderis, I Judson. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer 2009; 45(17): 2930–2934
https://doi.org/10.1016/j.ejca.2009.08.016 pmid: 19767198
76 D Garbay, A Le Cesne, N Penel, C Chevreau, P Marec-Berard, JY Blay, M Debled, N Isambert, A Thyss, E Bompas, O Collard, S Salas, JM Coindre, B Bui, A Italiano. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann Oncol 2012; 23(1): 182–186
https://doi.org/10.1093/annonc/mdr051 pmid: 21444357
77 AJ Weiss, S Horowitz, RD Lackman. Therapy of desmoid tumors and fibromatosis using vinorelbine. Am J Clin Oncol 1999; 22(2): 193–195
https://doi.org/10.1097/00000421-199904000-00020 pmid: 10199460
78 A Azzarelli, A Gronchi, R Bertulli, JD Tesoro, D Baratti, E Pennacchioli, P Dileo, A Rasponi, A Ferrari, S Pilotti, PG Casali. Low-dose chemotherapy with methotrexate and vinblastine for patients with advanced aggressive fibromatosis. Cancer 2001; 92(5): 1259–1264
https://doi.org/10.1002/1097-0142(20010901)92:5<1259::AID-CNCR1446>3.0.CO;2-Y pmid: 11571741
79 MM Bertagnolli, JA Morgan, CD Fletcher, CP Raut, P Dileo, RR Gill, GD Demetri, S George. Multimodality treatment of mesenteric desmoid tumours. Eur J Cancer 2008; 44(16): 2404–2410
https://doi.org/10.1016/j.ejca.2008.06.038 pmid: 18706807
80 K Tanaka, R Yoshikawa, H Yanagi, M Gega, Y Fujiwara, T Hashimoto-Tamaoki, S Hirota, T Tsujimura, N Tomita. Regression of sporadic intra-abdominal desmoid tumour following administration of non-steroidal anti-inflammatory drug. World J Surg Oncol 2008; 6(1): 17
https://doi.org/10.1186/1477-7819-6-17 pmid: 18257933
81 D Bocale, MT Rotelli, A Cavallini, DF Altomare. Anti-oestrogen therapy in the treatment of desmoid tumours: a systematic review. Colorectal Dis 2011; 13(12): e388–e395
https://doi.org/10.1111/j.1463-1318.2011.02758.x pmid: 21831172
82 S Li, Z Fan, Z Fang, J Liu, C Bai, R Xue, L Zhang, T Gao. Efficacy of vinorelbine combined with low-dose methotrexate for treatment of inoperable desmoid tumor and prognostic factor analysis. Chin J Cancer Res 2017; 29(5): 455–462
https://doi.org/10.21147/j.issn.1000-9604.2017.05.10 pmid: 29142465
[1] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[2] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[3] Amy Lee, Fa-Chyi Lee. Medical oncology management of advanced hepatocellular carcinoma 2019: a reality check[J]. Front. Med., 2020, 14(3): 273-283.
[4] Xiaojun Huang, Qian Jiang, Jianda Hu, Jianyong Li, Jie Jin, Fanyi Meng, Zhixiang Shen, Ting Liu, Depei Wu, Jianmin Wang, Jianxiang Wang. Four-year follow-up of patients with imatinib-resistant or intolerant chronic myeloid leukemia receiving dasatinib: efficacy and safety[J]. Front. Med., 2019, 13(3): 344-353.
[5] Liqin Wang, Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer[J]. Front. Med., 2018, 12(4): 490-495.
[6] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[7] Shuhang Wang,Yongping Song,Feifei Yan,Delong Liu. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors[J]. Front. Med., 2016, 10(4): 383-388.
[8] Peter B. Alexander,Xiao-Fan Wang. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies[J]. Front. Med., 2015, 9(2): 134-138.
[9] Yue Yu, Jie He. Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis[J]. Front Med, 2013, 7(2): 157-171.
[10] Liangqian Tong, Ming Zhao, Shu Zhu, Jing Chen. Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer[J]. Front Med, 2011, 5(4): 379-387.
[11] Bo PENG BA , Jinnong ZHANG MD , Jamile S. WOODS MD , Wei PENG MD, PhD . Molecular markers and pathogenically targeted therapy in non-small cell lung cancer[J]. Front. Med., 2009, 3(3): 245-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed