Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2009, Vol. 3 Issue (3) : 292-296    https://doi.org/10.1007/s11684-009-0057-y
Research articles
Design of tandem genes cluster for isoflavone engineering
Xunli XIA PhD , Guangxiao YANG PhD , Guangyuan HE PhD ,
China-UK HUST-RRes Genetics Engineering and Genomics Joint Laboratory, Genetic Engineering International Cooperation Base of the Ministry of Science and Technology of China, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
 Download: PDF(160 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, a universal effective novel method of constructing tandem genes cluster for isoflavone engineering was reported. A tandem genes cluster CHS-CHI-IFS (rIFS) of secondary metabolites of plant isoflavones was constructed by using the chalcone synthase (CHS), chalcone isomerase (CHI), and isoflavone synthase (IFS) (GenBank accession numbers EU526827, EU526829, EU526830) in only one recombination with the pET22b vector. The resulting expression vector pET-rIFS was heterogeneously expressed and co-incubated with barrenwort extractions, and the genistein-like component was detected.
Keywords isoflavones engineering      secondary metabolism      tandem genes cluster      
Issue Date: 05 September 2009
 Cite this article:   
Xunli XIA PhD,Guangyuan HE PhD,Guangxiao YANG PhD. Design of tandem genes cluster for isoflavone engineering[J]. Front. Med., 2009, 3(3): 292-296.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-009-0057-y
https://academic.hep.com.cn/fmd/EN/Y2009/V3/I3/292
Dixona R A, Ferreirab D. Genistein. Phytochemistry, 2002, 60(3): 205―211

doi: 10.1016/S0031-9422(02)00116-4
Mahmoud S S, Croteau R B. Metabolic engineering ofessential oil yield and composition in mint by altering expressionof deoxyxylulose phosphate reductoisomerase and menthofuran synthase. PNAS, 2001, 98(15): 8915―8920

doi: 10.1073/pnas.141237298
Chen Z, Young T E, Ling J, Chang S C, Gallie D R. Increasing vitamin C content of plantsthrough enhanced ascorbate recycling. PNAS, 2003, 10(6): 3525―3530

doi: 10.1073/pnas.0635176100
Paul D F, Susanne R, Cathie A S, Philippa B M, Joy W K, Norihiko M, Rachel G D, Wolfgang S, Peter M B. Evaluation of transgenic tomato plants expressing anadditional phytoene synthase in a fruit-specific manner. PNAS, 2002, 99(2): 1092―1097

doi: 10.1073/pnas.241374598
Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K. Engineering tropane biosynthetic pathwayin Hyoscyamus niger hairy root cultures. PNAS, 2004, 101(17): 6786―6791

doi: 10.1073/pnas.0401391101
Alekel D L, StGermain A, Pererson C T, Hanson K B, Stewart J W, Toda T. Isoflavone-rich soy protein isolate attenuates bone lossin the lumbar spine of perimenopausal women. Am J Clin Nutr, 2000, 72(3): 844―852
File S E, Jarrett N, Fluck E, Duffy R, Casey K, Wiseman H. Eatingsoya improves human memory. Psychopharmacology, 2001, 157(4): 430―436

doi: 10.1007/s002130100845
Fritz W A, Coward L, Wang J, Lamartiniere C A. Dietary genistein: perinatal mammary cancer prevention, bioavailabilityand toxicity testing in the rat. Carcinogenesis, 1998, 19(12): 2151―2158

doi: 10.1093/carcin/19.12.2151
Toshio A, Tomoyoshi A, Shin-ichi A. Flavonoids of Leguminous plants: Structure, biologicalactivity, and biosynthesis. J Plant Res, 2000, 113(4): 475―488

doi: 10.1007/PL00013958
Brenda W S. Flavonoid biosynthesis: A colorful model for genetics, biochemistry,cell biology, and biotechnology. PlantPhysiol, 2001, 126(2): 485―493

doi: 10.1104/pp.126.2.485
Liu C J, Jack W B, Christopher L S, Dixon R A. Bottlenecks for metabolic engineering of isoflavone glycoconjugatesin Arabidopsis. PNAS, 2002, 99(22): 14578―14583

doi: 10.1073/pnas.212522099
Yu O, Shi j, Hession A O , Maxwell C A , McGonigle B, Odell J T . Metabolic engineering to increase isoflavone biosynthesisin soybean seed. Phytochemistry, 2003, 63(7): 753―763

doi: 10.1016/S0031-9422(03)00345-5
Steele C L, Gijzen M, Qutob D, Dixon R A. Molecularcharacterization of the enzyme catalyzing the aryl migration reactionof isoflavonoid biosynthesis in soybean. Arch Biochem Biophys, 1999, 367(1): 147―150

doi: 10.1006/abbi.1999.1238
Van Adardt T G, van Rensburg H, Ferreira D. Synthesis of isoflavonoids. Enantiopure cis- and trans-6a-hydroxypterocarpansand a racemic trans-pterocarpan. Tetrahedron, 2001, 57(33): 7113―7126

doi: 10.1016/S0040-4020(01)00679-2
Vicario J L, Badia D, Dominguez E, Rodriquez M, Carrillo L. The first stereocontrolledsynthesis of isoflavanones. TetrahedronLett, 2000, 41(43): 8297―8300

doi: 10.1016/S0040-4039(00)01464-7
Roosien J, Belsham G J, Ryan M D, King A M Q, Vlak J M. Synthesis of foot-and-mouth disease viruscapsid proteins in insect cells using baculovirus expression vectors. J Gen Virol, 1990, 71(8): 1703―1711

doi: 10.1099/0022-1317-71-8-1703
Ryan M D, Drew J. Foot-and-mouth disease virus2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J, 1994, 13(4): 928―933
Suzuki N, Geletka L M, Nuss D L. Essential and dispensable virus-encoded replication elementsrevealed by efforts to develop hypoviruses as gene expression vectors. J Virol, 2000, 74(16): 7568―7577

doi: 10.1128/JVI.74.16.7568-7577.2000
de Felipe P, Hughes L E, Ryan M D, Brown J D. Co-translational,intraribosomal cleavage of polypeptides by the foot-and-mouth diseasevirus 2A peptide. J Biol Chem, 2003, 278(13): 11441―11448

doi: 10.1074/jbc.M211644200
Simoens C, Alliotte T, Mendel R, Muller A, Schiemann J, Van Lijsebettens M, Schell J, VanMontagu M, Inze D. A binary vector for transferring genomic libraries toplants. Nucleic Acids Res, 1986, 14(20): 8073―8090

doi: 10.1093/nar/14.20.8073
Hajdukiewicz P, Svab Z, Maliga P. The small, versatile pPZP family of Agrobacterium binaryvectors for plant transformation. PlantMol Biol, 1994, 25(6): 989―994

doi: 10.1007/BF00014672
Hamilton C M. A binary-BAC system for plant transformation with high-molecular-weightDNA. Gene, 1997, 200(2): 107―116

doi: 10.1016/S0378-1119(97)00388-0
Xiang C, Han P, Lutziger I, Wang K, Oliver D J. A mini binary vector series for planttransformation. Plant Mol Biol, 1999, 40(4): 711―717

doi: 10.1023/A:1006201910593
Hellens R P, Edwards E A, Leyland N R, Bean S, Mullineaux P M. pGreen: a versatile and flexiblebinary Ti vector for Agrobacteriummediated plant transformation. Plant Mol Biol, 2000b, 42(6): 819―832

doi: 10.1023/A:1006496308160
Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectorsfor plant functional genomics and proteomics. Plant J, 2006, 45(4): 616―629

doi: 10.1111/j.1365-313X.2005.02617.x
Halpin C, Barakate A, Askari B M, Abbott J C, Ryan M D. Enabling technologies formanipulating multiple genes on complex pathways. Plant Mol Biol, 2001, 47(2): 295―310

doi: 10.1023/A:1010604120234
Halpin C, Boerjan W. Stacking transgenes in foresttrees. Trends Plant Sci, 2003, 8(8): 363―365

doi: 10.1016/S1360-1385(03)00155-9
Capell T, Christou P. Progress in plant metabolicengineering. Curr Opin Biotechnol, 2004, 15(2): 148―154

doi: 10.1016/j.copbio.2004.01.009
Tyo K E, Alper H S, Stephanopoulos G N. Expanding the metabolic engineering toolbox:more options to engineer cells. TrendsBiotechnol, 2007, 25(3): 132―137

doi: 10.1016/j.tibtech.2007.01.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed