Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2009, Vol. 3 Issue (4) : 491-494    https://doi.org/10.1007/s11684-009-0066-x
Research articles
Relationship between Th17 cells and allograft rejection
Zhikun ZHENG MM,Jinsong LI MD,Ke JIANG MD,
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China;
 Download: PDF(104 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thl7 cells, a special kind of auxiliary type T cells, can secrete IL-17A, IL-17F, IL-21, IL-22, etc., as a newly discovered T-cell subset in recent years. As a different subset from the Thl and Th2 cells, Th17 cells play an important role in the development of a variety of autoimmune diseases. A current study shows that the IL-6 inflammatory response of the organization in combination with the occurrence of TGF-β can induce the differentiation of Thl7 cells. IL-23 can promote the production of IL17, as well as participate in amplification and maintenance of the survival of IL-l7 generating cells. In this process, STAT3 and ROR-γt are key transcription factors for the growing of Thl7 cells. As our knowledge on Th17 family members is rapidly growing and changing, it will be important to specify their involvement in the induction and regulation of allograft rejection in animal models as well as in clinical settings. Herein, we review the key features of Th17 cells and discuss their potential relevance to transplantation immunity.
Keywords TH17 cells      regulation      allograft      rejection      
Issue Date: 05 December 2009
 Cite this article:   
Zhikun ZHENG MM,Ke JIANG MD,Jinsong LI MD. Relationship between Th17 cells and allograft rejection[J]. Front. Med., 2009, 3(4): 491-494.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-009-0066-x
https://academic.hep.com.cn/fmd/EN/Y2009/V3/I4/491
Castellino F, Germain R N. Cooperation between CD4+ and CD8+ T cells: when,where, and how. Annu Rev Immunol, 2006, 24(1): 519–540

doi: 10.1146/annurev.immunol.23.021704.115825
Park H, Li Z, Yang X O, Chang S H, Nurieva R, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4+ T cells regulates tissue inflammation by producinginterleukin 17. Nat Immunol, 2005, 6(11): 1133–1141

doi: 10.1038/ni1261
Harrington L E, Hatton R D, Mangham P R, Weaver C T. Interleukin 17 producing CD4+ effecterT cells develop via a lineage distinct from the T helper type 1 and2 lineages. Nat Immunol, 2005, 6(11): 1123–1132

doi: 10.1038/ni1254
Aggarwal S, Ghilardi N, Xie M H, de Sauvagge F J, Gurney A L. Interleukin-23 promotes adistinct CD4+ T cells activation statecharacterized by the production of Interleukin-17. Biol Chem, 2003, 278(3): 1910–1914

doi: 10.1074/jbc.M207577200
Tato C M, O’Shea J J. What does it mean to be just17? Nature, 2006, 441(11): l66–l68
Veldhoen M, Hocking R J, Atkins C J, Locksley R M, Stockinger B. TGFbeta in the context ofan inflammatory cytokine milieu supports de novo differentiation ofIL-17-producing T cells. Immunity, 2006, 24(2): l79–189

doi: 10.1016/j.immuni.2006.01.001
Mangan P R, Harringlon L E, O’Quinn D B. Transforming growth factor-β inducesdevelopment of the TH17 lineage. Nature, 2006, 441: 231–234

doi: 10.1038/nature04754
Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu B M, Tato C, Yoshimura A, Hennighausen L, O’Shea J J. Selective regulatory function of Socs3in the formation of IL-17-secreting T cells. PNAS USA, 2006, 103(21): 8137–1842

doi: 10.1073/pnas.0600666103
Bettelli E, Carrier Y, Gao W, Korn T, Strom T B, Oukka M, Weiner H L, Kuchroo V K. Reciprocal developmental pathways for the generationof pathogenic effector ThI7 and regulatory T cells. Nature, 2006, 441(7090): 235–238

doi: 10.1038/nature04753
Langrish C L, Chen Y, Blumenschein W M, Mattson J, Basham B, Sedgwick J D, McClanahan T, Kastelein R A, Cua D J. IL-23 drives a pathogenic T cell population that inducesautoimmune inflammation. J Exp Med, 2005, 201(2): 233–240

doi: 10.1084/jem.20041257
Yang J, Jia L, Li L, Wu C Y. The differentiationand regulation of Th17 cell. Xibao Yu FenziMianyixue Zazhi, 2008, 24(3): 213–216 (in Chinese)
Ivanov I I, McKenzie B S, Zhou L, Tadokoro C E, Lepelley A, Lafaille J J, Cua D J, Littman D R. The orphan nuclear receptorRORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell, 2006, 126(6): 1121–1133

doi: 10.1016/j.cell.2006.07.035
Wahl S M, Wen J, Moutsopoulos N. TGF-beta: a mobile purveyor of immune privilege. Immunol Rev, 2006, 213: 213–217

doi: 10.1111/j.1600-065X.2006.00437.x
Brender C, Nielsen M, Kaltoft K, Mikkelsen G, Zhang Q, Wasik M, Billestrup N, Odum N. STAT3-mediated constitutiveexpression of SOCS-3 in cutaneous T cell lymphoma. Blood, 2001, 97(4): 1056–1062

doi: 10.1182/blood.V97.4.1056
Wormald S, Hilton D J. Inhibitors of cytokine signaltransduction. J Biol Chem, 2004, 279(2): 821–824

doi: 10.1074/jbc.R300030200
Batten M, Li J, Yi S, Kljavin N M, Danilenko D M, Lucas S, Lee J, de Sauvage F J, Ghilardi N. 1nterleukin-27 limits autoimmune encephalomyelitis bysuppressing the development of interleukin-17 producing T cells. Nat lmmunol, 2006, 7(9): 929–936
Stumhofer J S, Laurence A, Wilson E H, Huang E, Tato C M, Johnson L M, Villarino A V, Huang Q, Yoshimura A, Sehy D, Saris C J, O’Shea J J, Hennighausen L, Ernst M, Hunter C A. Interleukin-27 negatively regulates the development of interleukin-17-producingT helper cells during chronic inflammation of the central nervoussystem. Nat lmmuno1, 2006, 7(9): 937–945
Niederkorn J Y. Immunology and immunomodulation of corneal transplantation. Int Rev lmmunol, 2002, 21(2,3): 173–196
Dallman M J. Cytokines and transplantation: Thl/Th2 regulation of the immune responseto solid organ transplants in the adult. Curt Opin Immunol, 1995, 7(5): 632–638

doi: 10.1016/0952-7915(95)80069-7
Nakae S, Nambu A, Sudo K, Iwakura Y. Suppressionof immune induction of collagen-induced arthritis in IL-17-deficientmice. Immunol, 2003, 171(11): 6173–6177
Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y. Antigen-specificT cell sensitization is impaired in IL-17-deficient mice, causingsuppression of allergic cellular and humoral responses. Immunity, 2002, 17(3): 375–387

doi: 10.1016/S1074-7613(02)00391-6
Wu C Y. Th17 cell: A new subset of CD4+ T cell. Xibao YuFenziMianyixue Zazhi, 2006, 22(6): 695–697 (in Chinese)
Loong C C, Hsieh H G, Lui W Y, Chen A, Lin C Y. Evidence for the early involvement ofinterleukin-17 in human and experimental renal allograft rejection. J Pathol, 2002, 197(3): 322–332

doi: 10.1002/path.1117
Vanaudenaerde B M, Dupont L J, Wuyts W A, Verbeken E K, Meyts I, Bullens D M, Dilissen E, Luyts L, Van Raemdonck D E, Verleden G M. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J, 2006, 27(4): 779–787

doi: 10.1183/09031936.06.00019405
Yoshida S, Haque A, Mizobuchi T, Iwata T, Chiyo M, Webb T J, Baldrige L A, Heidler K M, Cummings O W, Fujisawa T, Blum J S, Brand D D, Wilkers D S. Anti-type V collagen lymphocytesthat express IL-17 and IL-23 induce rejection pathology in fresh andwell-healed lung transplants. Am J Transplant, 2006, 6(4): 724–735

doi: 10.1111/j.1600-6143.2006.01236.x
Burlingham W J, Love R B, Jankowska-Gan E, Haynes L D, Xu Q, Bobadilla J L, Meyer K C, Hayney M S, Braun R K, Greenspan D S, Gopalakrishnan B, Cai J, Brand D D, Yoshida S, Cummings O W, Wilkes D S. IL-17―dependent cellularimmunity to collagen type V predisposes to obliterative bronchiolitisin human lung transplants. J Clin Invest, 2007, 117(11): 3498–3506

doi: 10.1172/JCI28031
Hashimoto T, Akiyama K, Kobayashi N, Mori A. Comparisonof IL-17 production by helper T cells among atopic and nonatopic asthmaticsand control subjects. Hat Arch AllergyImmunol, 2005, 137 Suppl 1: 51–54

doi: 10.1159/000085432
Li J, Simeoni E, Fleury S, Dudler J, Fiorini E, Kappenberger L, Von Segesser L K, Vassalli G. Gene transfer of solubleinterleukin-17 receptor prolongs cardiac allograft survival in a ratmodel. Eur J Cardiothorac Surg, 2006, 29(5): 779–783

doi: 10.1016/j.ejcts.2006.01.052
Tang J L, Subbotin V M, Antonysamy M A, Troutt A B, Rao A S, Thomson A W. Interleukin-17 antagonism inhibits acute but not chronicvascular rejection. Transplantation, 2001, 72(2): 348–350

doi: 10.1097/00007890-200107270-00035
Antonysamy M A, Fanslow W C, Fu F, Li W, Qian S, Troutt A B, Thomson A W. Evidence for a role of IL-17in organ allograft rejection: IL-17 promotes the functional differentiationof dendritic cell progenitors. J Immunol, 1999, 162(1): 577–584
Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, Habicht A, Clarkson M R, Iacomini J, Glimcher L H, Sayegh M H, Ansari M J. A novel role of CD4+ Th17cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med, 2008, 205(13): 3133–3144

doi: 10.1084/jem.20081937
Kapessidon P, Poulin L, Dumoutier L, Goldman M, Renauld J C, Braun M Y. Interleukin-22 deficiency accelerates the rejection offull major histocompatibility complex-disparate heart allografts. Transplant Proc, 2008, 40(5): 1593–1597

doi: 10.1016/j.transproceed.2008.03.151
[1] Jiansen Du, Lin Fu, Yingli Sui, Lingqiang Zhang. The function and regulation of OTU deubiquitinases[J]. Front. Med., 2020, 14(5): 542-563.
[2] Dan Luo, Zhengyun Zuo, Hongyan Zhao, Yong Tan, Cheng Xiao. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice[J]. Front. Med., 2019, 13(5): 556-563.
[3] Liya Ju, Caroline Suberbielle, Xiaofan Li, Nuala Mooney, Dominique Charron. HLA and lung transplantation[J]. Front. Med., 2019, 13(3): 298-313.
[4] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[5] Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction[J]. Front. Med., 2018, 12(2): 123-129.
[6] Lei Han,Jing Yang,Xiuwen Wang,Dan Li,Ling Lv,Bin Li. Th17 Cells in autoimmune diseases[J]. Front. Med., 2015, 9(1): 10-19.
[7] Douglas Sipp. The unregulated commercialization of stem cell treatments: a global perspective[J]. Front Med, 2011, 5(4): 348-355.
[8] Qichang Zheng, Shanglong Liu, Zifang Song. Mechanism of arterial remodeling in chronic allograft vasculopathy[J]. Front Med, 2011, 5(3): 248-253.
[9] Ke SONG, Nianjing RAO, Meiling CHEN, Yingguang CAO. Regulation of exogenous bFGF gene mediated by recombinant adeno-associated virus in vitro[J]. Front Med Chin, 2009, 3(2): 158-163.
[10] Zhao DING, Zhishui CHEN, Xilin CHEN, Ming CAI, Hui GUO, Nianqiao GONG. Adenovirus-mediated antisense ERK2 gene therapy ameliorates chronic allograft nephropathy in a rat model[J]. Front Med Chin, 2009, 3(2): 204-210.
[11] Qiong CHEN, Qing YU, Yuhu SONG, Peiyuan Li, Ying CHANG, Zhijun WANG, Lifeng LIU, Wei WU, Jusheng LIN. Cloning of human XAF1 gene promoter and assay of its transcription activity in a variety of cell lines[J]. Front Med Chin, 2009, 3(2): 148-152.
[12] QU Yanchun, YANG Ze, SUN Liang, JI Linong. 662 A/G gene variation in human tumor necrosis factor receptor superfamily, member 9 (TNFRSF9)[J]. Front. Med., 2008, 2(3): 283-285.
[13] XIAO Yuping, MAO Lili, HAN Chengbo, LI Jinyi, XU Lei, XIN Yan. MSI/LOH and extron expression of the FHIT gene in gastric carcinoma[J]. Front. Med., 2007, 1(1): 99-103.
[14] ZHAO Ming, CHEN Rui, LI Aiping, ZHOU Jianwei. Effects of hemin and thermal stress exposure on JWA expression[J]. Front. Med., 2007, 1(1): 104-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed