Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2010, Vol. 4 Issue (4) : 399-411    https://doi.org/10.1007/s11684-010-0170-y
Research articles
Dysregulation of β-catenin by hepatitis B virus X protein in HBV-infected human hepatocellular carcinomas
Lei CHEN1,Liang HU1,Liang LI1,Yuan LIU1,Qian-Qian TU1, Yan-Xin CHANG1,He-Xin YAN1,Meng-Chao WU2, Hong-Yang WANG3,
1.International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China; 2.Second Military Medical University, Shanghai 200438, China; 3.International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China;National Laboratory for Oncogenes and Related Genes, Key Lab of Cancer Institute in Renji Hospital, Shanghai Jiao-Tong University, Shanghai 200441, China;
 Download: PDF(876 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract β-catenin is a key molecule involved in both cell-cell adhesion and Wnt signaling pathway. In our study, we found that, in the development of hepatocellular carcinoma (HCC), β-catenin was correlated with hepatitis B virus (HBV) X gene encoded protein, which is essential for HBV infectivity and is a potential cofactor in viral carcinogenesis. The expression levels of wild-type β-catenin and E-cadherin were decreased in HepG2 cells expressing hepatitis B virus X protein (HBx), accompanied by destabilization of adherens junction. Reverse transcriptase PCR (RT-PCR), Northern and Western blot showed that reduction of wild-type β-catenin expression involved degradation of the protein. However, RNA interference (RNAi) and luciferase assay indicated that HBx enhanced β-catenin mediated signaling in HepG2 cells. In addition, immunohistochemical and Western blot analysis of β-catenin revealed that a decrease in the β-catenin protein level was found in 58.3% of HBV-related HCCs versus 19.2% of non-HBV-related tumors. Our data suggest that the expression of HBx contributed to the development of HCC, in part, by repressing the wild-type β-catenin expression and enforcing β-catenin-dependent signaling pathway, thus inducing cellular changes leading to acquisition of metastatic and/or proliferation properties.
Keywords hepatocellular carcinoma      hepatitis B virus X protein      β-catenin      cell adhesion      E-cadherin      transcriptional activation      
Issue Date: 05 December 2010
 Cite this article:   
Qian-Qian TU,Lei CHEN,Liang LI, et al. Dysregulation of β-catenin by hepatitis B virus X protein in HBV-infected human hepatocellular carcinomas[J]. Front. Med., 2010, 4(4): 399-411.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-010-0170-y
https://academic.hep.com.cn/fmd/EN/Y2010/V4/I4/399
Schafer D F, Sorrell M F. Hepatocellular carcinoma. Lancet, 1999, 353(9160): 1253–1257
PMID: 10217098
Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A. Recurrent chromosomal abnormalities in hepatocellular carcinoma detected bycomparative genomic hybridization. Genes Chromosomes Cancer, 1997, 18(1): 59–65
PMID: 8993981
Feitelson M A, Duan L X. Hepatitis B virus X antigen in the pathogenesis of chronic infections and thedevelopment of hepatocellular carcinoma. Am J Pathol, 1997, 150(4): 1141–1157
PMID: 9094970
Su Q, Schr?der C H, Hofmann W J, Otto G, Pichlmayr R, Bannasch P. Expression of hepatitis Bvirus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology, 1998, 27(4): 1109–1120
PMID: 9537452
Kim C M, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virusinduces liver cancer in transgenic mice. Nature, 1991, 351(6324): 317–320
PMID: 2034275
Slagle B L, Lee T H, Medina D, Finegold M J, Butel J S. Increased sensitivity tothe hepatocarcinogen diethylnitrosamine in transgenic mice carryingthe hepatitis B virus X gene. Mol Carcinog, 1996, 15(4): 261–269
PMID: 8634084
Terradillos O, Billet O, Renard C A, Levy R, Molina T, Briand P, Buendia M A. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesisin transgenic mice. Oncogene, 1997, 14(4): 395–404
PMID: 9053836
Benn J, Schneider R J. Hepatitis B virus HBx protein activates Ras-GTP complex formationand establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A, 1994, 91(22): 10350–10354
PMID: 7937954
Natoli G, Avantaggiati M L, Chirillo P, Puri P L, Ianni A, Balsano C, Levrero M. Ras- and Raf-dependent activation of c-jun transcriptional activityby the hepatitis B virus transactivator pX. Oncogene, 1994, 9(10): 2837–2843
PMID: 8084589
Su F, Schneider R J. Hepatitis B virus HBx protein activates transcription factor NF-kappaBby acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol, 1996, 70(7): 4558–4566
PMID: 8676482
Benn J, Su F, Doria M, Schneider R J. Hepatitis B virus HBx protein induces transcription factor AP-1 byactivation of extracellular signal-regulated and c-Jun N-terminalmitogen-activated protein kinases. J Virol, 1996, 70(8): 4978–4985
PMID: 8764004
Mahé Y, Mukaida N, Kuno K, Akiyama M, Ikeda N, Matsushima K, Murakami S. Hepatitis B virus X protein transactivates human interleukin-8gene through acting on nuclear factor kB and CCAAT/enhancer-bindingprotein-like cis-elements. J Biol Chem, 1991, 266(21): 13759–13763
PMID: 1856209
Gottlob K, Fulco M, Levrero M, Graessmann A. The hepatitis B virus HBx protein inhibits caspase 3 activity. J Biol Chem, 1998, 273(50): 33347–33353
PMID: 9837909
Lee T H, Elledge S J, Butel J S. Hepatitis B virus X proteininteracts with a probable cellular DNA repair protein. J Virol, 1995, 69(2): 1107–1114
PMID: 7815490
Ueda H, Ullrich S J, Gangemi J D, Kappel C A, Ngo L, Feitelson M A, Jay G. Functional inactivation but not structural mutation ofp53 causes liver cancer. Nat Genet, 1995, 9(1): 41–47
PMID: 7704023
Tlsty T D. Cell-adhesion-dependent influences on genomic instabilityand carcinogenesis. Curr Opin Cell Biol, 1998, 10(5): 647–653
PMID: 9818176
Kemler R. From cadherins to catenins: cytoplasmic protein interactionsand regulation of cell adhesion. Trends Genet, 1993, 9(9): 317–321
PMID: 8236461
Kozyraki R, Scoazec J Y, Flejou J F, D'Errico A, Bedossa P, Terris B, Fiorentino M, Bringuier A F, Grigioni W F, Feldmann G. Expression of cadherins and alpha-catenin in primaryepithelial tumors of the liver. Gastroenterology, 1996, 110(4): 1137–1149
PMID: 8613003
Wei Y, Van Nhieu J T, Prigent S, Srivatanakul P, Tiollais P, Buendia M A. Altered expression of E-cadherinin hepatocellular carcinoma: correlations with genetic alterations,β-catenin expression, and clinical features. Hepatology, 2002, 36(3): 692–701
PMID: 12198663
Peifer M. β-catenin as oncogene: the smoking gun. Science, 1997, 275(5307): 1752–1753
PMID: 9122680
Moon R T, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through β-catenin. Science, 2002, 296(5573): 1644–1646
PMID: 12040179
He T C, Sparks A B, Rago C, Hermeking H, Zawel L, da Costa L T, Morin P J, Vogelstein B, Kinzler K W. Identification of c-MYC as a target of the APC pathway. Science, 1998, 281(5382): 1509–1512
PMID: 9727977
Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinomacells. Nature, 1999, 398(6726): 422–426
PMID: 10201372
Liu C, Li Y, Semenov M, Han C, Baeg G H, Tan Y, Zhang Z, Lin X, He X. Control of β-catenin phosphorylation/degradation by a dual-kinasemechanism. Cell, 2002, 108(6): 837–847
PMID: 11955436
Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2): 311–320
PMID: 11057903
de La Coste A, Romagnolo B, Billuart P, Renard C A, Buendia M A, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellularcarcinomas. Proc Natl Acad Sci U S A, 1998, 95(15): 8847–8851
PMID: 9671767
Samowitz W S, Powers M D, Spirio L N, Nollet F, van Roy F, Slattery M L. β-catenin mutations are more frequent in small colorectaladenomas than in larger adenomas and invasive carcinomas. Cancer Res, 1999, 59(7): 1442–1444
PMID: 10197610
Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J. Genetic alterations associatedwith hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology, 2001, 120(7): 1763–1773
PMID: 11375957
Hsu H C, Jeng Y M, Mao T L, Chu J S, Lai P L, Peng S Y. β-catenin mutations are associated with a subsetof low-stage hepatocellular carcinoma negative for hepatitis B virusand with favorable prognosis. Am J Pathol, 2000, 157(3): 763–770
PMID: 10980116
Huang H, Fujii H, Sankila A, Mahler-Araujo B M, Matsuda M, Cathomas G, Ohgaki H. β-catenin mutations are frequent in human hepatocellular carcinomas associatedwith hepatitis C virus infection. Am J Pathol, 1999, 155(6): 1795–1801
PMID: 10595907
Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T. Childhood hepatoblastomasfrequently carry a mutated degradation targeting box of the β-cateningene. Cancer Res, 1999, 59(2): 269–273
PMID: 9927029
Lian Z, Liu J, Pan J, Satiroglu Tufan N L, Zhu M, Arbuthnot P, Kew M, Clayton M M, Feitelson M A. A cellular gene up-regulated by hepatitis B virus-encodedX antigen promotes hepatocellular growth and survival. Hepatology, 2001, 34(1): 146–157
PMID: 11431746
Lian Z, Pan J, Liu J, Zhang S, Zhu M, Arbuthnot P, Kew M, Feitelson M A. The translation initiationfactor, hu-Sui1 may be a target of hepatitisB X antigen in hepatocarcinogenesis. Oncogene, 1999, 18(9): 1677–1687
PMID: 10208429
Yan H X, He Y Q, Dong H, Zhang P, Zeng J Z, Cao H F, Wu M C, Wang H Y. Physical and functional interaction betweenreceptor-like protein tyrosine phosphatase PCP-2 and β-catenin. Biochemistry, 2002, 41(52): 15854–15860
PMID: 12501215
Andrews N C, Faller D V. A rapid micropreparation technique for extraction of DNA-binding proteinsfrom limiting numbers of mammalian cells. Nucleic Acids Res, 1991, 19(9): 2499–2506
PMID: 2041787
Wang H, Lian Z, Lerch M M, Chen Z, Xie W, Ullrich A. Characterization of PCP-2, a novel receptor protein tyrosine phosphatase of the MAM domain family. Oncogene, 1996, 12(12): 2555–2562
PMID: 8700514
Carruba G, Cervello M, Miceli M D, Farruggio R, Notarbartolo M, Virruso L, Giannitrapani L, Gambino R, Montalto G, Castagnetta L. Truncated form of β-catenin and reduced expressionof wild-type catenins feature HepG2 human liver cancer cells. Ann N Y Acad Sci, 1999, 886: 212–216
PMID: 10667222
Su Q, Schr?der C H, Hofmann W J, Otto G, Pichlmayr R, Bannasch P. Expression of hepatitis Bvirus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology, 1998, 27(4): 1109–1120
PMID: 9537452
Wang W L, London W T, Feitelson M A. Hepatitis B x antigen in hepatitis B virus carrier patients with liver cancer. Cancer Res, 1991, 51(18): 4971–4977
PMID: 1654208
Huber A H, Stewart D B, Laurents D V, Nelson W J, Weis W I. The cadherin cytoplasmic domain is unstructured in the absence of β-catenin.A possible mechanism for regulating cadherin turnover. J Biol Chem, 2001, 276(15): 12301–12309
PMID: 11121423
Polakis P. The oncogenic activation of β-catenin. Curr Opin Genet Dev, 1999, 9(1): 15–21
PMID: 10072352
Gottardi C J, Wong E, Gumbiner B M. E-cadherin suppresses cellulartransformation by inhibiting β-catenin signaling in an adhesion-independentmanner. J Cell Biol, 2001, 153(5): 1049–1060
PMID: 11381089
Staal F J, Noort Mv M, Strous G J, Clevers H C. Wnt signals are transmitted through N-terminally dephosphorylatedβ-catenin. EMBO Rep, 2002, 3(1): 63–68
PMID: 11751573
[1] Amy Lee, Fa-Chyi Lee. Medical oncology management of advanced hepatocellular carcinoma 2019: a reality check[J]. Front. Med., 2020, 14(3): 273-283.
[2] Renyu Zhang, Zhao Zhang, Zekun Liu, Ding Wei, Xiaodong Wu, Huijie Bian, Zhinan Chen. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front. Med., 2019, 13(1): 3-11.
[3] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[4] Guangbiao Zhou, Xinchun Zhao. Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome[J]. Front. Med., 2018, 12(2): 236-238.
[5] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[6] Bo Zhou, Hongbin Xu, Meng Xia, Chaoyang Sun, Na Li, Ensong Guo, Lili Guo, Wanying Shan, Hao Lu, Yifan Wu, Yuan Li, Degui Yang, Danhui Weng, Li Meng, Junbo Hu, Ding Ma, Gang Chen, Kezhen Li. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer[J]. Front. Med., 2017, 11(2): 214-222.
[7] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[8] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[9] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[10] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[11] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[12] Guanghua Rong,Wenlin Bai,Zheng Dong,Chunping Wang,Yinying Lu,Zhen Zeng,Jianhui Qu,Min Lou,Hong Wang,Xudong Gao,Xiujuan Chang,Linjing An,Yan Chen,Yongping Yang. Cryotherapy for cirrhosis-based hepatocellular carcinoma: a single center experience from 1595 treated cases[J]. Front. Med., 2015, 9(1): 63-71.
[13] Kai Qu,Ting Lin,Zhixin Wang,Sinan Liu,Hulin Chang,Xinsen Xu,Fandi Meng,Lei Zhou,Jichao Wei,Minghui Tai,Yafeng Dong,Chang Liu. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 227-235.
[14] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[15] Marielle Reataza,David K. Imagawa. Advances in managing hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 175-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed