Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (1) : 20-29    https://doi.org/10.1007/s11684-014-0371-x
REVIEW
Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges
Yingchen Li1,Guoheng Hu2,*(),Qilai Cheng1
1. Post-Graduate School, Hunan University of Traditional Chinese Medicine, Changsha 410208, China
2. Department of Neurology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410007, China
 Download: PDF(338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ischemic stroke is a focal cerebral insult that often leads to many adverse neurological complications severely affecting the quality of life. The prevalence of stroke is increasing throughout the world, while the efficacy of current pharmacological therapies remains unclear. As a neuroregenerative therapy, the implantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) has shown great possibility to restore function after stroke. This review article provides an update role of hUC-MSCs implantation in the treatment of ischemic stroke. With the unique “immunosuppressive and immunoprivilege” property, hUC-MSCs are advised to be an important candidate for allogeneic cell treatment. Nevertheless, most of the treatments are still at primary stage and not clinically feasible at the current time. Several uncertain problems, such as culture conditions, allograft rejection, and potential tumorigenicity, are the choke points in this cellular therapy. More preclinical researches and clinical studies are needed before hUC-MSCs implantation can be used as a routinely applied clinical therapy.

Keywords cellular therapy      transplantation      human umbilical cord      mesenchymal stem cells      ischemic stroke     
Corresponding Author(s): Guoheng Hu   
Just Accepted Date: 24 October 2014   Online First Date: 02 February 2015    Issue Date: 02 March 2015
 Cite this article:   
Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0371-x
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I1/20
Categories Positive Negative
Adhesion molecule CD166, CD54, CD102, CD58, CD56, CD44, CD106 CD62P, CD31
Growth factors and cytokine receptors CD121, CD123, CD126, CD127, CDw119, CD120a, CD140a CD25
Integrin families CD49a, CD49b, CD29, CD104 CD11a and CD11b
Other molecules SH2, SH3, SH4, Thy1(CD90), CD73, CD105, CD146 CD34, CD45, CD80, CD86
Tab.1  Categories of surface markers expressed by hUC-MSCs
Fig.1  Potential therapeutic mechanisms of hUC-MSCs implantation for ischemic stroke: (1) replacement of damaged nervous cells; (2) promotion of endogenous neural cells; (3) secretion of neurotrophic factors; (4) induction of vascularization and angiogenesis; (5) reduction of apoptosis; (6) prevention of inflammatory effect.
1 Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke 2011; 42(5): 1437–1444
https://doi.org/10.1161/STROKEAHA.110.593129 pmid: 21493915
2 McGuckin CP, Jurga M, Miller AM, Sarnowska A, Wiedner M, Boyle NT, Lynch MA, Jablonska A, Drela K, Lukomska B, Domanska-Janik K, Kenner L, Moriggl R, Degoul O, Perruisseau-Carrier C, Forraz N. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys 2013; 534(1–2): 88–97
https://doi.org/10.1016/j.abb.2013.02.005 pmid: 23466243
3 Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res 2008; 100: 133–158
https://doi.org/10.1016/S0065-230X(08)00005-5 pmid: 18620095
4 Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 2010; 285(15): 11227–11234
https://doi.org/10.1074/jbc.M109.086389 pmid: 20139068
5 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024 pmid: 16904174
6 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147
https://doi.org/10.1126/science.284.5411.143 pmid: 10102814
7 Li C, Li B, Dong Z, Gao L, He X, Liao L, Hu C, Wang Q, Jin Y. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther 2014; 5(3): 67
https://doi.org/10.1186/scrt456 pmid: 24887697
8 Li D, Wang C, Shan W. Human amnion tissue injected with human umbilical cord mesenchymal stem cells repairs damaged sciatic nerves in rats. Neural Regen Res 2012; 7(23): 1771–1778
9 Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005; 23(2): 220–229
https://doi.org/10.1634/stemcells.2004-0166 pmid: 15671145
10 Guo J, Fan HH, Qian YX. IFN-γ can promote the immunosuppressive capacity of human umbilical cord mesenchymal stem cells by expression of indoleamine 2,3-dioxygenase. J Diagn Concepts Pract 2010; 9(3): 181–185
11 Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J (Engl)2012; 125(24): 4504–4510
pmid: 23253727
12 Kadam SS, Tiwari S, Bhonde RR. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev Biol Anim 2009; 45(1–2): 23–27
https://doi.org/10.1007/s11626-008-9155-4 pmid: 19057971
13 Dong M, Chen J, Ma YQ. Efficient method for isolation of human umbilical cord mesenchymal stem cells. Chin J Tissue Eng Res (Zhongguo Zu Zhi Gong Cheng Yan Jiu)2012; 16(45): 8406–8412 (in Chinese)
14 Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ, Li H, Shyu WC. Nonsenescent Hsp27-upregulated MSCs implantation promotes neuroplasticity in stroke model. Cell Transplant 2010; 19(10): 1261–1279
https://doi.org/10.3727/096368910X507204 pmid: 20525429
15 Sensebé L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application. Vox Sang 2010; 98(2): 93–107
https://doi.org/10.1111/j.1423-0410.2009.01227.x pmid: 19663934
16 Li JJ, Li D, Ju XL, Liu WB. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction. Neural Regen Res 2012; 7(34): 2663–2672
17 Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthop 2011; 2(6): 43–50
https://doi.org/10.5312/wjo.v2.i6.43
18 Liu L, Zhao X, Li P, Zhao G, Wang Y, Hu Y, Hou Y. A novel way to isolate MSCs from umbilical cords. Eur J Immunol 2012; 42(8): 2190–2193
https://doi.org/10.1002/eji.201142356 pmid: 22585466
19 Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med 2010; 3(4): 248–269
pmid: 21072260
20 Xu LX, Cao YB, Liu ZY, Wu YM, Wang ZH, Yan B, Da WM, Wu XX. Transplantation of haploidentical-hematopoietic stem cells combined with two kind of third part cells for chronic aplastic anemia: one case report. J Exp Hematol (Zhongguo Shi Yan Xue Ye Xue Za Zhi)2013; 21(6): 1522–1525 (in Chinese)
pmid: 24370041
21 Gu W, Gu J. Homing mechanism of umbilical cord mesenchymal stem cells. Chin J Tissue Eng Res (Zhongguo Zu Zhi Gong Cheng Yan Jiu)2013; 17(6): 1135–1140 (in Chinese)
22 Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J (Engl)2012; 125(24): 4504–4510
pmid: 23253727
23 Hass R, Kasper C, B?hm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9(1): 12
https://doi.org/10.1186/1478-811X-9-12 pmid: 21569606
24 Guo J, Yang J, Cao G, Fan H, Guo C, Ma YE, Qian Y, Chen L, Li X, Chang C. Xenogeneic immunosuppression of human umbilical cord mesenchymal stem cells in a major histocompatibility complex-mismatched allogeneic acute graft-versus-host disease murine model. Eur J Haematol 2011; 87(3): 235–243
https://doi.org/10.1111/j.1600-0609.2011.01635.x pmid: 21535158
25 Wang D, Chen K, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Bayard F, Zhu D, Han ZC. CD14+ monocytes promote the immunosuppressive effect of humanumbilical cord matrix stem cells. Exp Cell Res 2010; 316(15): 2414–2423
https://doi.org/10.1016/j.yexcr.2010.04.018 pmid: 20420825
26 Das M, Sundell IB, Koka PS. Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells 2013; 8(1): 1–16
pmid: 24459809
27 Atoui R, Shum-Tim D, Chiu RC. Myocardial regenerative therapy: immunologic basis for the potential “universal donor cells”. Ann Thorac Surg 2008; 86(1): 327–334
https://doi.org/10.1016/j.athoracsur.2008.03.038 pmid: 18573459
28 Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int 2013; 2013: 496218
https://doi.org/10.1155/2013/496218 pmid: 23577036
29 Liu GY, Xu Y, Li Y, Wang LH, Liu YJ, Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy 2013; 15(10): 1208–1217
https://doi.org/10.1016/j.jcyt.2013.05.011 pmid: 23850421
30 Wang D, Ji YR, Chen K, Du WT, Yang ZX, Han ZB, Chi Y, Liang L, Bayard F, Han ZC. IL-6 production stimulated by CD14(+) monocytes-paracrined IL-1β does not contribute to the immunosuppressive activity of human umbilical cord mesenchymal stem cells. Cell Physiol Biochem 2012; 29(3–4): 551–560
https://doi.org/10.1159/000338509 pmid: 22508062
31 Wu CC, Wu TC, Liu FL, Sytwu HK, Chang DM. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell Immunol 2012; 273(1): 30–40
https://doi.org/10.1016/j.cellimm.2011.11.009 pmid: 22196378
32 Liu GY, Xu Y, Li Y, Wang LH, Liu YJ, Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy 2013; 15(10): 1208–1217
https://doi.org/10.1016/j.jcyt.2013.05.011 pmid: 23850421
33 Greco SJ, Rameshwar P. Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv 2012; 3(8): 997–1004
https://doi.org/10.4155/tde.12.69 pmid: 22946432
34 Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 2011; 7(1): 1–16
https://doi.org/10.1007/s12015-010-9166-x pmid: 20602182
35 Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2014; 115: 92–115
https://doi.org/10.1016/j.pneurobio.2013.11.007 pmid: 24333397
36 Liao W, Xie J, Zhong J, Liu Y, Du L, Zhou B, Xu J, Liu P, Yang S, Wang J, Han Z, Han ZC. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 2009; 87(3): 350–359
https://doi.org/10.1097/TP.0b013e318195742e pmid: 19202439
37 Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 2011; 42(7): 2045–2053
https://doi.org/10.1161/STROKEAHA.110.603621 pmid: 21566227
38 Weise G, Lorenz M, P?sel C, Maria Riegelsberger U, St?rbeck V, Kamprad M, Kranz A, Wagner DC, Boltze J. Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab 2014; 34(1): e1–e9
https://doi.org/10.1038/jcbfm.2013.185 pmid: 24169850
39 Pellegrini L, Bennis Y, Guillet B, Velly L, Bruder N, Pisano P. Cell therapy for stroke: from myth to reality. Rev Neurol (Paris)2013; 169(4): 291–306 (in French)
https://doi.org/10.1016/j.neurol.2012.08.009 pmid: 23246427
40 Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke 2011; 42(8): 2369–2375
https://doi.org/10.1161/STROKEAHA.110.599654 pmid: 21757669
41 Xia G, Hong X, Chen X, Lan F, Zhang G, Liao L. Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates. J Perinat Med 2010; 38(2): 215–221
https://doi.org/10.1515/jpm.2010.021 pmid: 20121545
42 Messerli M, Wagner A, Sager R, Mueller M, Baumann M, Surbek DV, Schoeberlein A. Stem cells from umbilical cord Wharton’s jelly from preterm birth have neuroglial differentiation potential. Reprod Sci 2013; 20(12): 1455–1464
43 Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, Lu S, Wang X, Li S, Wang W, Li H. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS ONE 2013; 8(5): e64000
https://doi.org/10.1371/journal.pone.0064000 pmid: 23724014
44 Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, Macleod MR. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke 2012; 7(7): 582–588
https://doi.org/10.1111/j.1747-4949.2012.00797.x pmid: 22687044
45 Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 2006; 24(3): 781–792
https://doi.org/10.1634/stemcells.2005-0330 pmid: 16223852
46 Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 2013; 288(18): 12478–12488
https://doi.org/10.1074/jbc.M112.449025 pmid: 23511639
47 Tornero D, Wattananit S, Gr?nning Madsen M, Koch P, Wood J, Tatarishvili J, Mine Y, Ge R, Monni E, Devaraju K, Hevner RF, Brüstle O, Lindvall O, Kokaia Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain 2013; 136(12): 3561–3577
https://doi.org/10.1093/brain/awt278 pmid: 24148272
48 Martí-Fàbregas J, Romaguera-Ros M, Gómez-Pinedo U, Martínez-Ramírez S, Jiménez-Xarrié E, Marín R, Martí-Vilalta JL, García-Verdugo JM. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 2010; 74(5): 357–365
https://doi.org/10.1212/WNL.0b013e3181cbccec pmid: 20054008
49 Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci USA 2010; 107(17): 7993–7998
https://doi.org/10.1073/pnas.1000154107 pmid: 20385829
50 Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, Liu J. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 2004; 55(3): 381–389
https://doi.org/10.1002/ana.10853 pmid: 14991816
51 Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin 2013; 34(1): 78–90
https://doi.org/10.1038/aps.2012.107 pmid: 23064725
52 Liu C, Sun J. Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules 2014; 15(1): 436–443
https://doi.org/10.1021/bm401780v pmid: 24359018
53 Kim SS, Yoo SW, Park TS, Ahn SC, Jeong HS, Kim JW, Chang DY, Cho KG, Kim SU, Huh Y, Lee JE, Lee SY, Lee YD, Suh-Kim H. Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 2008; 26(9): 2217–2228
https://doi.org/10.1634/stemcells.2008-0108 pmid: 18617687
54 Seo JH, Cho SR. Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Med J 2012; 53(6): 1059–1067
https://doi.org/10.3349/ymj.2012.53.6.1059 pmid: 23074102
55 Xu W, Wang X, Xu G, Guo J. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq Bras Oftalmol 2013; 76(2): 105–110
https://doi.org/10.1590/S0004-27492013000200010 pmid: 23828471
56 Choi M, Lee HS, Naidansaren P, Kim HK, O E, Cha JH, Ahn HY, Yang PI, Shin JC, Joe YA. Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol 2013; 45(3): 560–570
https://doi.org/10.1016/j.biocel.2012.12.001 pmid: 23246593
57 Alder J, Kramer BC, Hoskin C, Thakker-Varia S. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation. Dev Neurobiol 2012; 72(6): 755–765
https://doi.org/10.1002/dneu.20980 pmid: 21954108
58 Ribeiro CA, Fraga JS, Gr?os M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ. The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 2012; 3(3): 18
https://doi.org/10.1186/scrt109 pmid: 22551705
59 Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 2007; 27(4): 355–363
https://doi.org/10.1111/j.1440-1789.2007.00792.x pmid: 17899689
60 Verina T, Fatemi A, Johnston MV, Comi AM. Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 2013; 48(5): 346–354
https://doi.org/10.1016/j.pediatrneurol.2012.10.010 pmid: 23583051
61 Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 2014; 7(1): 174–183
pmid: 24427337
62 Petrova ES. The use of stem cells to stimulate regeneration of damaged nerve. Tsitologiia 2012; 54(7): 525–540 (in Russian)
pmid: 23074855
63 Liu Z, Huang D, Zhang M, Chen Z, Jin J, Huang S, Zhang Z, Wang Z, Chen L, Chen L, Xu Y. Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells. BMC Neurosci 2011; 12: 67
https://doi.org/10.1186/1471-2202-12-67 pmid: 21756347
64 Wang LL, Chen D, Lee J, Gu X, Alaaeddine G, Li J, Wei L, Yu SP. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice. PLoS ONE 2014; 9(2): e87284
https://doi.org/10.1371/journal.pone.0087284 pmid: 24503654
65 Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 2014; 7(1): 174–183
pmid: 24427337
66 Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, Ohneda O. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2013; 22(9): 1370–1386
https://doi.org/10.1089/scd.2012.0486 pmid: 23231075
67 Zhai XD, Chen ZY, Leng XF, Wang YJ, Chen Lu, Jiang S. Treat flap ischemia-reperfusion injury by local transplanting human umbilical cord mesenchymal stem cells. Chin J Plast Surg (Zhonghua Zheng Xing Wai Ke Za Zhi)2012; 28(3): 203–207 (in Chinese)
pmid: 22870709
68 Kim WR, Sun W. Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ 2011; 53(2): 225–235
https://doi.org/10.1111/j.1440-169X.2010.01226.x pmid: 21338348
69 Lin WY, Chang YC, Ho CJ, Huang CC. Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke 2013; 44(1): 162–169
https://doi.org/10.1161/STROKEAHA.112.677617 pmid: 23192759
70 Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res 2013; 35(3): 320–328
https://doi.org/10.1179/1743132812Y.0000000151 pmid: 23485057
71 Scheibe F, Klein O, Klose J, Priller J. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 2012; 32(4): 567–576
https://doi.org/10.1007/s10571-012-9798-2 pmid: 22290155
72 Scuteri A, Ravasi M, Pasini S, Bossi M, Tredici G. Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience 2011; 172: 12–19
https://doi.org/10.1016/j.neuroscience.2010.10.065 pmid: 21044661
73 Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010; 87(5): 779–789
https://doi.org/10.1189/jlb.1109766 pmid: 20130219
74 Carroll J. Human cord blood for the hypoxic-ischemic neonate. Pediatr Res 2012; 71(4 Pt 2): 459–463
https://doi.org/10.1038/pr.2011.53 pmid: 22278181
75 Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR, Willing AE. Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 2014; 59: 76–84
https://doi.org/10.1016/j.mcn.2014.01.004 pmid: 24472845
76 Bickels J, Weinstein T, Robinson D, Nevo Z. Common skeletal growth retardation disorders resulting from abnormalities within the mesenchymal stem cells reservoirs in the epiphyseal organs pertaining to the long bones. J Pediatr Endocrinol Metab 2010; 23(11): 1107–1122
https://doi.org/10.1515/jpem.2010.176 pmid: 21284324
77 Leonardo CC, Hall AA, Collier LA, Ajmo CT Jr, Willing AE, Pennypacker KR. Human umbilical cord blood cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after middle cerebral artery occlusion. J Neurosci Res 2010; 88(6): 1213–1222
pmid: 19998484
78 Seo JH, Jang IK, Kim HB, Yang MS, Lee JE, Kim HE, Eom YW, Lee DH, Yu JH, Kim JY, Kim HO, Cho SR. Immunomodulation from intravenous transplantation of mesenchymal stem cells promotes functional recovery in spinal cord injured rats. Cell Med 2011; 2(2): 55–67
https://doi.org/10.3727/215517911X582788
79 Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33(9): 1322–1334
https://doi.org/10.1038/jcbfm.2013.91 pmid: 23756689
80 Petrie Aronin CE, Tuan RS. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res C Embryo Today 2010; 90(1): 67–74
https://doi.org/10.1002/bdrc.20174 pmid: 20301222
81 Carroll JE, Mays RW. Update on stem cell therapy for cerebral palsy. Expert Opin Biol Ther 2011; 11(4): 463–471
https://doi.org/10.1517/14712598.2011.557060 pmid: 21299445
82 Wang D, Wang S, Shi C. Update on cancer related issues of mesenchymal stem cell-based therapies. Curr Stem Cell Res Ther 2012; 7(5): 370–380
https://doi.org/10.2174/157488812802481454 pmid: 22329585
83 Lua I, James D, Wang J, Wang KS, Asahina K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 2014; 60(1): 311–322
https://doi.org/10.1002/hep.27035 pmid: 24488807
84 Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW, Chang PJ. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res 2013; 319(14): 2216–2229
https://doi.org/10.1016/j.yexcr.2013.06.003 pmid: 23751564
85 Rameshwar P. Would cancer stem cells affect the future investment in stem cell therapy. World J Exp Med 2012; 2(2): 26–29
https://doi.org/10.5493/wjem.v2.i2.26 pmid: 24520530
86 Lin G, Yang R, Banie L, Wang G, Ning H, Li LC, Lue TF, Lin CS. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 2010; 70(10): 1066–1073
https://doi.org/10.1002/pros.21140 pmid: 20232361
87 Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 2011; 134(6): 1790–1807
https://doi.org/10.1093/brain/awr063 pmid: 21493695
88 Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010; 28(6): 1099–1106
https://doi.org/10.1002/stem.430 pmid: 20506226
89 Chen GH, Yang T, Tian H, Qiao M, Liu HW, Fu CC, Miao M, Jin ZM, Tang XW, Han Y, He GS, Zhang XH, Ma X, Chen F, Hu XH, Xue SL, Wang Y, Qiu HY, Sun AN, Chen ZZ, Wu DP. Clinical study of umbilical cord-derived mesenchymal stem cells for treatment of nineteen patients with steroid-resistant severe acute graft-versus-host disease. Chin J Hematol (Zhonghua Xue Ye Xue Za Zhi)2012; 33(4): 303–306 (in Chinese)
pmid: 22781723
[1] Ling Wang, Lining Wang, Xing Fan, Wei Tang, Jiong Hu. Fludarabine and intravenous busulfan conditioning with post-transplantation cyclophosphamide for allogeneic peripheral stem cell transplantation for adult patients with lymphoid malignancies: a prospective single-arm phase II study[J]. Front. Med., 2021, 15(1): 108-115.
[2] Lijuan Hu, Qi Wang, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Kaiyan Liu, Hui Wang, Xiaojun Huang, Xiaodong Mo. Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(4): 492-503.
[3] Junjun Jia, Xinyao Tian, Jianwen Jiang, Zhigang Ren, Haifeng Lu, Ning He, Haiyang Xie, Lin Zhou, Shusen Zheng. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation[J]. Front. Med., 2019, 13(4): 451-460.
[4] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Minimal residual disease-directed immunotherapy for high-risk myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(3): 354-364.
[5] Liya Ju, Caroline Suberbielle, Xiaofan Li, Nuala Mooney, Dominique Charron. HLA and lung transplantation[J]. Front. Med., 2019, 13(3): 298-313.
[6] Xiaodong Mo, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang. Interferon-α salvage treatment is effective for patients with acute leukemia/myelodysplastic syndrome with unsatisfactory response to minimal residual disease-directed donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(2): 238-249.
[7] Meng Lv, Yingjun Chang, Xiaojun Huang. Everyone has a donor: contribution of the Chinese experience to global practice of haploidentical hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(1): 45-56.
[8] Xiaohan Yang, Tiezheng Zheng, Hao Hong, Nan Cai, Xiaofeng Zhou, Changkai Sun, Liying Wu, Shuhong Liu, Yongqi Zhao, Lingling Zhu, Ming Fan, Xuezhong Zhou, Fengxie Jin. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model[J]. Front. Med., 2018, 12(3): 307-318.
[9] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[10] Fei Gao, Jingyu Chen, Dong Wei, Bo Wu, Min Zhou. Lung transplantation for bronchiolitis obliterans syndrome after allogenic hematopoietic stem cell transplantation[J]. Front. Med., 2018, 12(2): 224-228.
[11] Xuying Pei, Xiangyu Zhao, Yu Wang, Lanping Xu, Xiaohui Zhang, Kaiyan Liu, Yingjun Chang, Xiaojun Huang. Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts[J]. Front. Med., 2018, 12(2): 153-163.
[12] Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction[J]. Front. Med., 2018, 12(2): 123-129.
[13] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[14] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[15] Lei Li,Yimei Liu,Tiancheng Luo,Jian Zhou,Yingyong Hou,Xizhong Shen,Jiyao Wang. Comprehensive treatment of acute-on-chronic liver failure in a patient with hepatitis B: a case report[J]. Front. Med., 2014, 8(2): 250-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed