Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (3) : 275-287    https://doi.org/10.1007/s11684-015-0410-2
REVIEW
Molecular mechanisms of fatty liver in obesity
Lixia Gan1,*(),Wei Xiang1,Bin Xie2,Liqing Yu3,*()
1. Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
2. Department of Hepatobiliary Surgery, Daping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing 400042, China
3. Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
 Download: PDF(451 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.

Keywords nonalcoholic fatty liver disease      insulin resistance      obesity     
Corresponding Author(s): Lixia Gan,Liqing Yu   
Just Accepted Date: 22 July 2015   Online First Date: 21 August 2015    Issue Date: 26 August 2015
 Cite this article:   
Lixia Gan,Wei Xiang,Bin Xie, et al. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0410-2
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I3/275
Fig.1  A schematic illustrating pathways and regulators implicated in obesity-related hepatic steatosis.
Pathways/moleculesFunctionsPatterns in NAFLDReferences
1. Hepatic uptake of nonesterified fatty acids
Caveolin-1Lipid trafficking, lipogenesisIncreased [20,21]
FATP-2, FATP-5Uptake of LCFAIncreased [15,16]
FAT/CD36Uptake of FAIncreased [17-19]
FABP1 (L-FABP), FABP-4, FABP-5Intracellular FA transportersIncreased [22,23]
2. Hepatic FA and TG synthesis
ACC-1, ACC-2Converts acetyl-CoA to malonyl-CoAIncreased [25,28]
FASSynthesizes palmitic acidIncreased [25,28]
SCD-1Synthesizes monounsaturated LCFAIncreased [25,28]
GPAT, AGPAT, DGATSynthesizes TGIncreased [52-54]
3. Hepatic fatty acid oxidation
CPT1Transfers FA to mitochondriaDecreased [71]
β-oxidation enzymesShortens LCFA into acetyl-CoAInconclusive [94,95]
4. Hepatic triglyceride secretion
Apo B-100VLDL assemblyIncreased [63]
MTPLipidation of apoB100Increased [62,63]
5. Fat lipolysis
ATGLConverts TG to DGDecreased [119]
HSLConverts DG to MGDecreased [120]
MGLConverts MG to FA and glycerolConstitutively expressed [121]
PLIN1LD-associated proteinMutated in lipodystrophy [124,136]
CIDEA,CIDECLD-associated protein that inhibits AGTLIncreased [129-131]
CGI-58ATGL activatorDecreased [65]
G0S2ATGL inhibitorIncreased [127,128]
PNPLA3TG hydrolase?SNP (I148M) predisposes this disease [67,68]
6. Regulators
PPAR-α→ CD 36, L-FABP, PGC-1α and CPT-1Decreased [74,88]
PPAR-γ→ CD 36, SREBP-1c, ChREBP, ACC, FAS, and SCD-1Increased [32,88]
LXR-α→ CD 36 and L-FABPIncreased [28,29]
PXR→ CD 36Increased [31]
SREBP-1c→ ACC-1, ACC-2, FAS, SCD-1, and DGAT1Increased [33]
ChREBP→ LPK, ACC-1, and FASIncreased [35]
FXR? LXR, SREBP-1c, and DNL→ PPAR-α, FAO, and TG clearanceDecreased [30]
PGC-1α→ Mitochondrial biogenesis and FAODecreased [74,75]
SIRT1→PPAR-α, PGC-1α, and FAO;→ FGF-21 and energy expenditure; →Lipolysis; ? SREBP-1c and DNLDecreased [72,73,75,80]
FGF-21→ FAO and energy expenditure? SREBP-1c and lipogenesisIncreased(FGF21 resistance) [83-87]
miR-122→ FAS, ACC, and SCD-1Increased [98-100]
miR-33? SREBP-1Decreased [106]
miR-34a? SIRT1Increased [107]
miR-370→ miR-122, SREBP-1c, and DNL? CPT-1 and FAOIncreased [108]
miR-613? LXR-α, SREBP-1c, ChREBP, FAS, and ACCIn vivo ? [109]
Tab.1  Pathways/molecules involved in obesity-related hepatic steatosis
1 Fan JG, Zhu J, Li XJ, Chen L, Li L, Dai F, Li F, Chen SY. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol 2005; 43(3): 508–514
https://doi.org/10.1016/j.jhep.2005.02.042 pmid: 16006003
2 Fan JG. Epidemiology of alcoholic and nonalcoholic fatty liver disease in China. J Gastroenterol Hepatol 2013; 28(Suppl 1): 11–17
https://doi.org/10.1111/jgh.12036 pmid: 23855290
3 Masarone M, Federico A, Abenavoli L, Loguercio C, Persico M. Non alcoholic fatty liver: epidemiology and natural history. Rev Recent Clin Trials 2014; 9(3): 126–133
https://doi.org/10.2174/1574887109666141216111143 pmid: 25514916
4 Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40(6): 1387–1395
https://doi.org/10.1002/hep.20466 pmid: 15565570
5 Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA 2010; 303(3): 235–241
https://doi.org/10.1001/jama.2009.2014 pmid: 20071471
6 Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006; 118(4): 1388–1393
https://doi.org/10.1542/peds.2006-1212 pmid: 17015527
7 Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010; 28(1): 155–161
https://doi.org/10.1159/000282080 pmid: 20460905
8 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332(6037): 1519–1523
https://doi.org/10.1126/science.1204265 pmid: 21700865
9 Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462–E468
https://doi.org/10.1152/ajpendo.00064.2004 pmid: 15339742
10 Hooper AJ, Adams LA, Burnett JR. Genetic determinants of hepatic steatosis in man. J Lipid Res 2011; 52(4): 593–617
https://doi.org/10.1194/jlr.R008896 pmid: 21245030
11 Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005; 129(1): 113–121
https://doi.org/10.1053/j.gastro.2005.04.014 pmid: 16012941
12 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115(5): 1343–1351
https://doi.org/10.1172/JCI23621 pmid: 15864352
13 Nielsen TS, Jessen N, J?rgensen JO, M?ller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52(3): R199–R222
https://doi.org/10.1530/JME-13-0277 pmid: 24577718
14 Redgrave TG. Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J Clin Invest 1970; 49(3): 465–471
https://doi.org/10.1172/JCI106255 pmid: 5415674
15 Falcon A, Doege H, Fluitt A, Tsang B, Watson N, Kay MA, Stahl A. FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 2010; 299(3): E384–E393
https://doi.org/10.1152/ajpendo.00226.2010 pmid: 20530735
16 Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE, Stahl A. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 2006; 130(4): 1245–1258
https://doi.org/10.1053/j.gastro.2006.02.006 pmid: 16618416
17 Xu S, Jay A, Brunaldi K, Huang N, Hamilton JA. CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane. Biochemistry 2013; 52(41): 7254–7261
https://doi.org/10.1021/bi400914c pmid: 24090054
18 Koonen DP, Jacobs RL, Febbraio M, Young ME, Soltys CL, Ong H, Vance DE, Dyck JR. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007; 56(12): 2863–2871
https://doi.org/10.2337/db07-0907 pmid: 17728375
19 Su X, Abumrad NA. Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 2009; 20(2): 72–77
https://doi.org/10.1016/j.tem.2008.11.001 pmid: 19185504
20 Mastrodonato M, Calamita G, Rossi R, Mentino D, Bonfrate L, Portincasa P, Ferri D, Liquori GE. Altered distribution of caveolin-1 in early liver steatosis. Eur J Clin Invest 2011; 41(6): 642–651
https://doi.org/10.1111/j.1365-2362.2010.02459.x pmid: 21250982
21 Fernández MA, Albor C, Ingelmo-Torres M, Nixon SJ, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton RG, Pol A. Caveolin-1 is essential for liver regeneration. Science 2006; 313(5793): 1628–1632
https://doi.org/10.1126/science.1130773 pmid: 16973879
22 Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008; 7(6): 489–503
https://doi.org/10.1038/nrd2589 pmid: 18511927
23 Queipo-Ortu?o MI, Escoté X, Ceperuelo-Mallafré V, Garrido-Sanchez L, Miranda M, Clemente-Postigo M, Pérez-Pérez R, Peral B, Cardona F, Fernández-Real JM, Tinahones FJ, Vendrell J. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels. PLoS ONE 2012; 7(11): e48605
https://doi.org/10.1371/journal.pone.0048605 pmid: 23139800
24 Berk PD. Regulatable fatty acid transport mechanisms are central to the pathophysiology of obesity, fatty liver, and metabolic syndrome. Hepatology 2008; 48(5): 1362–1376
https://doi.org/10.1002/hep.22632 pmid: 18972439
25 Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten A, Auvinen P, Yki-J?rvinen H. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 2008; 294(5): G1281–G1287
https://doi.org/10.1152/ajpgi.00074.2008 pmid: 18388185
26 Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S, García-Mediavilla MV, Fernández-Bermejo M, Lozano-Rodríguez T, Vargas-Castrillón J, Buqué X, Ochoa B, Aspichueta P, González-Gallego J, García-Monzón C. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011; 60(10): 1394–1402
https://doi.org/10.1136/gut.2010.222844 pmid: 21270117
27 Westerbacka J, Kolak M, Kiviluoto T, Arkkila P, Sirén J, Hamsten A, Fisher RM, Yki-J?rvinen H. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 2007; 56(11): 2759–2765
https://doi.org/10.2337/db07-0156 pmid: 17704301
28 Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T, Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C, Sánchez-Campos S. Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond)2011; 120(6): 239–250
pmid: 20929443
29 Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006; 116(3): 607–614
https://doi.org/10.1172/JCI27883 pmid: 16511593
30 Yang ZX, Shen W, Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol Int 2010; 4(4): 741–748
https://doi.org/10.1007/s12072-010-9202-6 pmid: 21286345
31 Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J, Lee JH, Khadem S, Ren S, Li S, Silverstein RL, Xie W. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134(2): 556–567
https://doi.org/10.1053/j.gastro.2007.11.037 pmid: 18242221
32 Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunfeld C, Feingold KR. Up-regulation of peroxisome proliferator-activated receptors (PPAR-α) and PPAR-γ messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 2000; 141(11): 4021–4031
pmid: 11089532
33 Foretz M, Guichard C, Ferré P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA 1999; 96(22): 12737–12742
https://doi.org/10.1073/pnas.96.22.12737 pmid: 10535992
34 Ishii S, Iizuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci USA 2004; 101(44): 15597–15602
https://doi.org/10.1073/pnas.0405238101 pmid: 15496471
35 Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 2001; 98(16): 9116–9121
https://doi.org/10.1073/pnas.161284298 pmid: 11470916
36 Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci USA 1998; 95(11): 5987–5992
https://doi.org/10.1073/pnas.95.11.5987 pmid: 9600904
37 Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S, Yamada N. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J Biol Chem 1999; 274(50): 35832–35839
https://doi.org/10.1074/jbc.274.50.35832 pmid: 10585467
38 Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci USA 1999; 96(24): 13656–13661
https://doi.org/10.1073/pnas.96.24.13656 pmid: 10570128
39 Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA 1999; 96(20): 11235–11240
https://doi.org/10.1073/pnas.96.20.11235 pmid: 10500160
40 Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 1997; 272(32): 20213–20221
https://doi.org/10.1074/jbc.272.32.20213 pmid: 9242699
41 Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL, Brown MS. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110(4): 489–500
https://doi.org/10.1016/S0092-8674(02)00872-3 pmid: 12202038
42 Sun LP, Seemann J, Goldstein JL, Brown MS. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci USA 2007; 104(16): 6519–6526
https://doi.org/10.1073/pnas.0700907104 pmid: 17428919
43 Yellaturu CR, Deng X, Cagen LM, Wilcox HG, Mansbach CM 2nd, Siddiqi SA, Park EA, Raghow R, Elam MB. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J Biol Chem 2009; 284(12): 7518–7532
https://doi.org/10.1074/jbc.M805746200 pmid: 19158095
44 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125–1131
https://doi.org/10.1172/JCI0215593 pmid: 11994399
45 Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6(1): 77–86
https://doi.org/10.1016/S1097-2765(05)00010-9 pmid: 10949029
46 Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 2008; 320(5882): 1492–1496
https://doi.org/10.1126/science.1158042 pmid: 18556558
47 Lee JN, Ye J. Proteolytic activation of sterol regulatory element-binding protein induced by cellular stress through depletion of Insig-1. J Biol Chem 2004; 279(43): 45257–45265
https://doi.org/10.1074/jbc.M408235200 pmid: 15304479
48 Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, Ferré P, Foufelle F. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest 2009; 119(5): 1201–1215
https://doi.org/10.1172/JCI37007 pmid: 19363290
49 Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 2006; 4(2): 107–110
https://doi.org/10.1016/j.cmet.2006.06.008 pmid: 16890538
50 Ma L, Robinson LN, Towle HC. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 2006; 281(39): 28721–28730
https://doi.org/10.1074/jbc.M601576200 pmid: 16885160
51 Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J 2008; 55(4): 617–624
https://doi.org/10.1507/endocrj.K07E-110 pmid: 18490833
52 Lindén D, William-Olsson L, Ahnmark A, Ekroos K, Hallberg C, Sj?gren HP, Becker B, Svensson L, Clapham JC, Oscarsson J, Schreyer S. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J 2006; 20(3): 434–443
https://doi.org/10.1096/fj.05-4568com pmid: 16507761
53 Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 2002; 31(1): 21–23
https://doi.org/10.1038/ng880 pmid: 11967537
54 Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang XM, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 2007; 282(31): 22678–22688
https://doi.org/10.1074/jbc.M704213200 pmid: 17526931
55 Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab 2003; 29(5): 478–485
https://doi.org/10.1016/S1262-3636(07)70061-7 pmid: 14631324
56 Gibbons GF, Wiggins D, Brown AM, Hebbachi AM. Synthesis and function of hepatic very-low-density lipoprotein. Biochem Soc Trans 2004; 32(Pt 1): 59–64
https://doi.org/10.1042/BST0320059 pmid: 14748713
57 Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44(1): 22–32
https://doi.org/10.1194/jlr.R200014-JLR200 pmid: 12518019
58 Ginsberg HN, Fisher EA. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 2009; 50(Suppl): S162–S166
https://doi.org/10.1194/jlr.R800090-JLR200 pmid: 19050312
59 Kamagate A, Dong HH. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle 2008; 7(20): 3162–3170
https://doi.org/10.4161/cc.7.20.6882 pmid: 18927507
60 Tanoli T, Yue P, Yablonskiy D, Schonfeld G. Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004; 45(5): 941–947
https://doi.org/10.1194/jlr.M300508-JLR200 pmid: 14967820
61 Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000; 20(1): 663–697
https://doi.org/10.1146/annurev.nutr.20.1.663 pmid: 10940349
62 Bartels ED, Lauritsen M, Nielsen LB. Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes 2002; 51(4): 1233–1239
https://doi.org/10.2337/diabetes.51.4.1233 pmid: 11916950
63 Higuchi N, Kato M, Tanaka M, Miyazaki M, Takao S, Kohjima M, Kotoh K, Enjoji M, Nakamuta M, Takayanagi R. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp Ther Med 2011; 2(6): 1077–1081
pmid: 22977624
64 Wu JW, Wang SP, Alvarez F, Casavant S, Gauthier N, Abed L, Soni KG, Yang G, Mitchell GA. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 2011; 54(1): 122–132
https://doi.org/10.1002/hep.24338 pmid: 21465509
65 Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G, Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G, Zechner R. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab 2006; 3(5): 309–319
https://doi.org/10.1016/j.cmet.2006.03.005 pmid: 16679289
66 Guo F, Ma Y, Kadegowda AK, Betters JL, Xie P, Liu G, Liu X, Miao H, Ou J, Su X, Zheng Z, Xue B, Shi H, Yu L. Deficiency of liver Comparative Gene Identification-58 causes steatohepatitis and fibrosis in mice. J Lipid Res 2013; 54(8): 2109–2120
https://doi.org/10.1194/jlr.M035519 pmid: 23733885
67 Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40(12): 1461–1465
https://doi.org/10.1038/ng.257 pmid: 18820647
68 Zain SM, Mohamed R, Mahadeva S, Cheah PL, Rampal S, Basu RC, Mohamed Z. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet 2012; 131(7): 1145–1152
https://doi.org/10.1007/s00439-012-1141-y pmid: 22258181
69 Smagris E, BasuRay S, Li J, Huang Y, Lai KM, Gromada J, Cohen JC, Hobbs HH. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015; 61(1): 108–118
https://doi.org/10.1002/hep.27242 pmid: 24917523
70 Berlanga A, Guiu-Jurado E, Porras JA, Auguet T. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol 2014; 7: 221–239
pmid: 25045276
71 Jogl G, Hsiao YS, Tong L. Structure and function of carnitine acyltransferases. Ann N Y Acad Sci 2004; 1033(1): 17–29
https://doi.org/10.1196/annals.1320.002 pmid: 15591000
72 Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8(5): 347–358
https://doi.org/10.1016/j.cmet.2008.08.017 pmid: 19046567
73 Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature 2006; 444(7121): 868–874
https://doi.org/10.1038/nature05486 pmid: 17167475
74 Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62(3): 720–733
https://doi.org/10.1016/j.jhep.2014.10.039 pmid: 25450203
75 Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 2007; 104(31): 12861–12866
https://doi.org/10.1073/pnas.0702509104 pmid: 17646659
76 Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009; 9(4): 327–338
https://doi.org/10.1016/j.cmet.2009.02.006 pmid: 19356714
77 Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J, Ye J. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 2010; 151(6): 2504–2514
https://doi.org/10.1210/en.2009-1013 pmid: 20339025
78 Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, Guarente L, Zang M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 2011; 25(5): 1664–1679
https://doi.org/10.1096/fj.10-173492 pmid: 21321189
79 Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010; 285(44): 33959–33970
https://doi.org/10.1074/jbc.M110.122978 pmid: 20817729
80 Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L, Zang M. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 2014; 146(2): 539–49.e7
https://doi.org/10.1053/j.gastro.2013.10.059 pmid: 24184811
81 Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR, Kandror KV. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res 2011; 52(9): 1693–1701
https://doi.org/10.1194/jlr.M014647 pmid: 21743036
82 Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 2011; 286(25): 22227–22234
https://doi.org/10.1074/jbc.M111.228874 pmid: 21540183
83 Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6): 415–425
https://doi.org/10.1016/j.cmet.2007.05.003 pmid: 17550777
84 Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12): 6018–6027
https://doi.org/10.1210/en.2008-0816 pmid: 18687777
85 Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6): 1627–1635
https://doi.org/10.1172/JCI23606 pmid: 15902306
86 Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 2009; 106(26): 10853–10858
https://doi.org/10.1073/pnas.0904187106 pmid: 19541642
87 Kliewer SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. Am J Clin Nutr 2010; 91(1): 254S–257S
https://doi.org/10.3945/ajcn.2009.28449B pmid: 19906798
88 Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53(1): 409–435
https://doi.org/10.1146/annurev.med.53.082901.104018 pmid: 11818483
89 Karpe F, Ehrenborg EE. PPARδ in humans: genetic and pharmacological evidence for a significant metabolic function. Curr Opin Lipidol 2009; 20(4): 333–336
https://doi.org/10.1097/MOL.0b013e32832dd4b1 pmid: 19512923
90 Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 2010; 52(1): 79–104
https://doi.org/10.1002/hep.23623 pmid: 20578268
91 Ratziu V. Pharmacological agents for NASH. Nat Rev Gastroenterol Hepatol 2013; 10(11): 676–685
https://doi.org/10.1038/nrgastro.2013.193 pmid: 24126564
92 Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 2007; 20(3): 351–358
pmid: 17671740
93 Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 2009; 48(1): 1–26
https://doi.org/10.1016/j.plipres.2008.08.001 pmid: 18824034
94 Kotronen A, Sepp?l?-Lindroos A, Vehkavaara S, Bergholm R, Frayn KN, Fielding BA, Yki-J?rvinen H. Liver fat and lipid oxidation in humans. Liver Int 2009; 29(9): 1439–1446
https://doi.org/10.1111/j.1478-3231.2009.02076.x pmid: 19602132
95 Croci I, Byrne NM, Choquette S, Hills AP, Chachay VS, Clouston AD, O’Moore-Sullivan TM, Macdonald GA, Prins JB, Hickman IJ. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 2013; 62(11): 1625–1633
https://doi.org/10.1136/gutjnl-2012-302789 pmid: 23077135
96 Fabbrini E, Mohammed BS, Korenblat KM, Magkos F, McCrea J, Patterson BW, Klein S. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2010; 95(6): 2727–2735
https://doi.org/10.1210/jc.2009-2622 pmid: 20371660
97 Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10(9): 542–552
https://doi.org/10.1038/nrgastro.2013.87 pmid: 23689081
98 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12(9): 735–739
https://doi.org/10.1016/S0960-9822(02)00809-6 pmid: 12007417
99 Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 2004; 1(2): 106–113
https://doi.org/10.4161/rna.1.2.1066 pmid: 17179747
100 Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3(2): 87–98
https://doi.org/10.1016/j.cmet.2006.01.005 pmid: 16459310
101 Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438(7068): 685–689
https://doi.org/10.1038/nature04303 pmid: 16258535
102 Pirola CJ, Fernandez GT, Castano GO, Mallardi P, San MJ, Mora GLLM, Flichman D, Mirshahi F, Sanyal AJ, Sookoian S. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015; 64(5): 800–812
https://doi.org/10.1136/gutjnl-2014-306996 pmid: 24973316
103 Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 2008; 48(6): 1810–1820
https://doi.org/10.1002/hep.22569 pmid: 19030170
104 Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, Mao H, Wei M, Clark KR, Mendell JR, Caligiuri MA, Jacob ST, Mendell JT, Ghoshal K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122(8): 2871–2883
https://doi.org/10.1172/JCI63539 pmid: 22820288
105 Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, Hsu MT, Wu JC, Huang HD, Shiao MS, Hsiao M, Tsou AP. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122(8): 2884–2897
https://doi.org/10.1172/JCI63455 pmid: 22820290
106 Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Sowa N, Yahagi N, Shimano H, Matsumura S, Inoue K, Marusawa H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 2013; 4: 2883
https://doi.org/10.1038/ncomms3883 pmid: 24300912
107 Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, Wang L, Kemper JK. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 2010; 285(17): 12604–12611
https://doi.org/10.1074/jbc.M109.094524 pmid: 20185821
108 Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1α and affects lipid metabolism. J Lipid Res 2010; 51(6): 1513–1523
https://doi.org/10.1194/jlr.M004812 pmid: 20124555
109 Ou Z, Wada T, Gramignoli R, Li S, Strom SC, Huang M, Xie W. MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation. Mol Endocrinol 2011; 25(4): 584–596
https://doi.org/10.1210/me.2010-0360 pmid: 21310851
110 Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131–1135
https://doi.org/10.1038/nature07976 pmid: 19339967
111 Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11(6): 467–478
https://doi.org/10.1016/j.cmet.2010.04.005 pmid: 20519119
112 Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Biomed Res Int 2014; 2014: 120179
113 Meijer AJ. Amino acid regulation of autophagosome formation. Methods Mol Biol 2008; 445: 89–109
pmid: 18425444
114 Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, Watanabe S. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun 2011; 412(4): 618–625
https://doi.org/10.1016/j.bbrc.2011.08.012 pmid: 21856284
115 Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, Uchiyama A, Kon K, Ikejima K, Watanabe S. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res 2014; 44(9): 1026–1036
https://doi.org/10.1111/hepr.12282 pmid: 24299564
116 Mummadi RR, Kasturi KS, Chennareddygari S, Sood GK. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 2008; 6(12): 1396–1402
https://doi.org/10.1016/j.cgh.2008.08.012 pmid: 18986848
117 Johnson NA, George J. Fitness versus fatness: moving beyond weight loss in nonalcoholic fatty liver disease. Hepatology 2010; 52(1): 370–381
https://doi.org/10.1002/hep.23711 pmid: 20578153
118 Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R. Lipolysis: pathway under construction. Curr Opin Lipidol 2005; 16(3): 333–340
https://doi.org/10.1097/01.mol.0000169354.20395.1c pmid: 15891395
119 Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 2004; 306(5700): 1383–1386
https://doi.org/10.1126/science.1100747 pmid: 15550674
120 Kraemer FB, Shen WJ. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 2002; 43(10): 1585–1594
https://doi.org/10.1194/jlr.R200009-JLR200 pmid: 12364542
121 Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 1997; 272(43): 27218–27223
https://doi.org/10.1074/jbc.272.43.27218 pmid: 9341166
122 Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 1991; 266(17): 11341–11346
pmid: 2040638
123 Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, Shapiro L, Dolios G, Wang R, Lisanti MP, Brasaemle DL. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem 2004; 279(40): 42062–42071
https://doi.org/10.1074/jbc.M407462200 pmid: 15292255
124 Yamaguchi T, Omatsu N, Matsushita S, Osumi T. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem 2004; 279(29): 30490–30497
https://doi.org/10.1074/jbc.M403920200 pmid: 15136565
125 Granneman JG, Moore HP, Granneman RL, Greenberg AS, Obin MS, Zhu Z. Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem 2007; 282(8): 5726–5735
https://doi.org/10.1074/jbc.M610580200 pmid: 17189257
126 Granneman JG, Moore HP, Krishnamoorthy R, Rathod M. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem 2009; 284(50): 34538–34544
https://doi.org/10.1074/jbc.M109.068478 pmid: 19850935
127 Yang X, Lu X, Lombès M, Rha GB, Chi YI, Guerin TM, Smart EJ, Liu J. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 2010; 11(3): 194–205
https://doi.org/10.1016/j.cmet.2010.02.003 pmid: 20197052
128 Wang Y, Zhang Y, Qian H, Lu J, Zhang Z, Min X, Lang M, Yang H, Wang N, Zhang P. The G0/G<?Pub Caret?>1 switch gene 2 is an important regulator of hepatic triglyceride metabolism. PLoS ONE 2013; 8(8): e72315
https://doi.org/10.1371/journal.pone.0072315 pmid: 23951308
129 Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 2012; 32(5): 1094–1098
https://doi.org/10.1161/ATVBAHA.111.241489 pmid: 22517368
130 Rubio-Cabezas O, Puri V, Murano I, Saudek V, Semple RK, Dash S, Hyden CS, Bottomley W, Vigouroux C, Magré J, Raymond-Barker P, Murgatroyd PR, Chawla A, Skepper JN, Chatterjee VK, Suliman S, Patch AM, Agarwal AK, Garg A, Barroso I, Cinti S, Czech MP, Argente J, O’Rahilly S, Savage DB; LD Screening Consortium. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 2009; 1(5): 280–287
https://doi.org/10.1002/emmm.200900037 pmid: 20049731
131 Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugini RA, Czech MP. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008; 105(22): 7833–7838
https://doi.org/10.1073/pnas.0802063105 pmid: 18509062
132 Shen WJ, Patel S, Miyoshi H, Greenberg AS, Kraemer FB. Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. J Lipid Res 2009; 50(11): 2306–2313
https://doi.org/10.1194/jlr.M900176-JLR200 pmid: 19515989
133 Wang H, Hu L, Dalen K, Dorward H, Marcinkiewicz A, Russell D, Gong D, Londos C, Yamaguchi T, Holm C, Rizzo MA, Brasaemle D, Sztalryd C. Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J Biol Chem 2009; 284(46): 32116–32125
https://doi.org/10.1074/jbc.M109.006726 pmid: 19717842
134 Chakrabarti P, Kim JY, Singh M, Shin YK, Kim J, Kumbrink J, Wu Y, Lee MJ, Kirsch KH, Fried SK, Kandror KV. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol 2013; 33(18): 3659–3666
https://doi.org/10.1128/MCB.01584-12 pmid: 23858058
135 Albert JS, Yerges-Armstrong LM, Horenstein RB, Pollin TI, Sreenivasan UT, Chai S, Blaner WS, Snitker S, O’Connell JR, Gong DW, Breyer RJ 3rd, Ryan AS, McLenithan JC, Shuldiner AR, Sztalryd C, Damcott CM. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 2014; 370(24): 2307–2315
https://doi.org/10.1056/NEJMoa1315496 pmid: 24848981
136 Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P, Reznik Y, Charpentier G, Auclair M, Delépine M, Barroso I, Semple RK, Lathrop M, Lascols O, Capeau J, O’Rahilly S, Magré J, Savage DB, Vigouroux C. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 2011; 364(8): 740–748
https://doi.org/10.1056/NEJMoa1007487 pmid: 21345103
137 Gandotra S, Lim K, Girousse A, Saudek V, O’Rahilly S, Savage DB. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem 2011; 286(40): 34998–35006
https://doi.org/10.1074/jbc.M111.278853 pmid: 21757733
138 Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 2009; 297(2): E289–E296
https://doi.org/10.1152/ajpendo.00099.2009 pmid: 19401457
139 McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann Intern Med 2003; 139(10): 802–809
https://doi.org/10.7326/0003-4819-139-10-200311180-00007 pmid: 14623617
140 McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism 2004; 53(4): 495–499
https://doi.org/10.1016/j.metabol.2003.10.032 pmid: 15045698
141 Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, Balletshofer B, Machicao F, Fritsche A, H?ring HU. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 2008; 168(15): 1609–1616
https://doi.org/10.1001/archinte.168.15.1609 pmid: 18695074
142 Semple RK, Sleigh A, Murgatroyd PR, Adams CA, Bluck L, Jackson S, Vottero A, Kanabar D, Charlton-Menys V, Durrington P, Soos MA, Carpenter TA, Lomas DJ, Cochran EK, Gorden P, O’Rahilly S, Savage DB. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 2009; 119(2): 315–322
pmid: 19164855
143 Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, Robuck PR; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362(18): 1675–1685
https://doi.org/10.1056/NEJMoa0907929 pmid: 20427778
144 Calori G, Lattuada G, Piemonti L, Garancini MP, Ragogna F, Villa M, Mannino S, Crosignani P, Bosi E, Luzi L, Ruotolo G, Perseghin G. Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care 2011; 34(1): 210–215
https://doi.org/10.2337/dc10-0665 pmid: 20937689
145 Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab 2012; 97(7): 2482–2488
https://doi.org/10.1210/jc.2011-3475 pmid: 22508708
146 Lopez-Garcia E, Guallar-Castillon P, Leon-Mu?oz L, Rodriguez-Artalejo F. Prevalence and determinants of metabolically healthy obesity in Spain. Atherosclerosis 2013; 231(1): 152–157
https://doi.org/10.1016/j.atherosclerosis.2013.09.003 pmid: 24125427
147 Shea JL, Randell EW, Sun G. The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity (Silver Spring)2011; 19(3): 624–630
https://doi.org/10.1038/oby.2010.174 pmid: 20706202
148 van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, Gaye A, G?gele M, Heier M, Hiekkalinna T, Joensuu A, Newby C, Pang C, Partinen E, Reischl E, Schwienbacher C, Tammesoo ML, Swertz MA, Burton P, Ferretti V, Fortier I, Giepmans L, Harris JR, Hillege HL, Holmen J, Jula A, Kootstra-Ros JE, Kval?y K, Holmen TL, M?nnist? S, Metspalu A, Midthjell K, Murtagh MJ, Peters A, Pramstaller PP, Saaristo T, Salomaa V, Stolk RP, Uusitupa M, van der Harst P, van der Klauw MM, Waldenberger M, Perola M, Wolffenbuttel BH. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord 2014; 14(1): 9
https://doi.org/10.1186/1472-6823-14-9 pmid: 24484869
149 Durward CM, Hartman TJ, Nickols-Richardson SM. All-cause mortality risk of metabolically healthy obese individuals in NHANES III. J Obes 2012; 2012: 460321
150 Pajunen P, Kotronen A, Korpi-Hy?v?lti E, Kein?nen-Kiukaanniemi S, Oksa H, Niskanen L, Saaristo T, Saltevo JT, Sundvall J, Vanhala M, Uusitupa M, Peltonen M. Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey. BMC Public Health 2011; 11(1): 754
https://doi.org/10.1186/1471-2458-11-754 pmid: 21962038
151 Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179–185
pmid: 22297845
152 Day CP. Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol 2002; 16(5): 663–678
https://doi.org/10.1053/bega.2002.0333 pmid: 12406438
[1] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[2] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[3] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[4] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[5] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[6] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[7] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[8] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[9] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[10] Juan Zheng,Shih-Lung Woo,Xiang Hu,Rachel Botchlett,Lulu Chen,Yuqing Huo,Chaodong Wu. Metformin and metabolic diseases: a focus on hepatic aspects[J]. Front. Med., 2015, 9(2): 173-186.
[11] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[12] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[13] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[14] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[15] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed