Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (1) : 33-40    https://doi.org/10.1007/s11684-016-0431-5
REVIEW
Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications
Aixiu Qiao1,2,Feng Gu1,Xiaojing Guo1,Xinmin Zhang3,Li Fu1,*()
1. Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China
2. Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
3. Department of Pathology, Cooper University Hospital & Cooper Medical School of Rowan University, One Cooper Plaza, Camden, NJ 08103, USA
 Download: PDF(154 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Breast cancer is the most common malignant tumor in women, and the incidence of this disease has increased in recent years because of changes in diet, living environment, gestational age, and other unknown factors. Previous studies focused on cancer cells, but an increasing number of recent studies have analyzed the contribution of cancer microenvironment to the initiation and progression of breast cancer. Cancer-associated fibroblasts (CAFs), the most abundant cells in tumor stroma, secrete various active biomolecules, including extracellular matrix components, growth factors, cytokines, proteases, and hormones. CAFs not only facilitate the initiation, growth, angiogenesis, invasion, and metastasis of cancer but also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of breast cancer. In this article, we reviewed the literature and summarized the research findings on CAFs in breast cancer.

Keywords cancer-associated fibroblast      breast cancer      progression      prognosis     
Corresponding Author(s): Li Fu   
Just Accepted Date: 30 December 2015   Online First Date: 20 January 2016    Issue Date: 31 March 2016
 Cite this article:   
Aixiu Qiao,Feng Gu,Xiaojing Guo, et al. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications[J]. Front. Med., 2016, 10(1): 33-40.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0431-5
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I1/33
1 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70
https://doi.org/10.1016/S0092-8674(00)81683-9 pmid: 10647931
2 Aboussekhra A. Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 2011; 55(7-9): 841–849
https://doi.org/10.1387/ijdb.113362aa pmid: 22161840
3 Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 2013; 32(1-2): 303–315
https://doi.org/10.1007/s10555-012-9415-3 pmid: 23114846
4 Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett 2015; 361(2): 155–163
https://doi.org/10.1016/j.canlet.2015.02.018 pmid: 25700776
5 Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C. Stroma in breast development and disease. Semin Cell Dev Biol 2010; 21(1): 11–18
https://doi.org/10.1016/j.semcdb.2009.10.003 pmid: 19857593
6 Pontén F, Jirström K, Uhlen M. The Human Protein Atlas—a tool for pathology. J Pathol 2008; 216(4): 387–393
https://doi.org/10.1002/path.2440 pmid: 18853439
7 Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316(8): 1324–1331
https://doi.org/10.1016/j.yexcr.2010.02.045 pmid: 20211171
8 Conklin MW, Keely PJ. Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adh Migr 2012; 6(3): 249–260
https://doi.org/10.4161/cam.20567 pmid: 22568982
9 Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27(5): 549–550
https://doi.org/10.1007/BF02147594 pmid: 5132594
10 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006; 6(5): 392–401
https://doi.org/10.1038/nrc1877 pmid: 16572188
11 Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol 2010; 2(11): a003244
https://doi.org/10.1101/cshperspect.a003244 pmid: 20591988
12 Strutz F. The fibroblast—a (trans-) differentiated cell? Nephrol Dial Transplant 1995; 10(9): 1504–1506
pmid: 8559451
13 De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008;123(10): 2229–2238PMID:18777559
14 Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 2006; 5(12): 1640–1646
https://doi.org/10.4161/cbt.5.12.3354 pmid: 17106243
15 Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 2010; 17(2): 135–147
https://doi.org/10.1016/j.ccr.2009.12.041 pmid: 20138012
16 Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol 2010; 21(1): 40–46
https://doi.org/10.1016/j.semcdb.2009.11.017 pmid: 19944178
17 Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 1988;41(5):707–712PMID 2835323
18 Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA, Orimo A. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 2010; 107(46): 20009–20014
https://doi.org/10.1073/pnas.1013805107 pmid: 21041659
19 Rønnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95(2): 859–873
https://doi.org/10.1172/JCI117736 pmid: 7532191
20 Vaughan MB, Howard EW, Tomasek JJ. Transforming growth factor-β1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 2000; 257(1): 180–189
https://doi.org/10.1006/excr.2000.4869 pmid: 10854066
21 Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265–273
https://doi.org/10.1038/nrc2620 pmid: 19262571
22 Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 2008; 99(9): 1375–1379
https://doi.org/10.1038/sj.bjc.6604662 pmid: 18797460
23 Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 2007; 67(21): 10123–10128
https://doi.org/10.1158/0008-5472.CAN-07-3127 pmid: 17974953
24 Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68(11): 4331–4339
https://doi.org/10.1158/0008-5472.CAN-08-0943 pmid: 18519693
25 Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, Syn WK, Zhang J, Kuo PC, Mi Z. Osteopontin mediates an MZF1-TGF-b1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene 2015;34(37): 4821–4833
pmid: 25531323
26 Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 2008; 26(3): 789–797
https://doi.org/10.1634/stemcells.2007-0742 pmid: 18065393
27 Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 2009; 4(4): e4992
https://doi.org/10.1371/journal.pone.0004992 pmid: 19352430
28 Bronzert DA, Pantazis P, Antoniades HN, Kasid A, Davidson N, Dickson RB, Lippman ME. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci U S A 1987; 84(16): 5763–5767
https://doi.org/10.1073/pnas.84.16.5763 pmid: 3039506
29 Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 2000; 19(38): 4337–4345
https://doi.org/10.1038/sj.onc.1203785 pmid: 10980609
30 Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müller GA. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int 2000; 57(4): 1521–1538
https://doi.org/10.1046/j.1523-1755.2000.00997.x pmid: 10760088
31 Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 2010; 70(17): 6945–6956
https://doi.org/10.1158/0008-5472.CAN-10-0785 pmid: 20699369
32 Hendrayani SF, Al-Khalaf HH, Aboussekhra A. The cytokine IL-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J Biol Chem 2014; 289(45): 30962–30976
https://doi.org/10.1074/jbc.M114.594044 pmid: 25231991
33 Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M. p53 attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 2006; 66(22): 10671–10676
https://doi.org/10.1158/0008-5472.CAN-06-2323 pmid: 17108103
34 Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A. Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 2005; 65(5): 1627–1630
https://doi.org/10.1158/0008-5472.CAN-04-3791 pmid: 15753354
35 Trimis G, Chatzistamou I, Politi K, Kiaris H, Papavassiliou AG. Expression of p21waf1/Cip1 in stromal fibroblasts of primary breast tumors. Hum Mol Genet 2008; 17(22): 3596–3600
https://doi.org/10.1093/hmg/ddn252 pmid: 18713757
36 Trimboli AJ, Cantemir-Stone CZ, Li F, Wallace JA, Merchant A, Creasap N, Thompson JC, Caserta E, Wang H, Chong JL, Naidu S, Wei G, Sharma SM, Stephens JA, Fernandez SA, Gurcan MN, Weinstein MB, Barsky SH, Yee L, Rosol TJ, Stromberg PC, Robinson ML, Pepin F, Hallett M, Park M, Ostrowski MC, Leone G. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 2009; 461(7267): 1084–1091
https://doi.org/10.1038/nature08486 pmid: 19847259
37 Trimmer C, Sotgia F, Whitaker-Menezes D, Balliet RM, Eaton G, Martinez-Outschoorn UE, Pavlides S, Howell A, Iozzo RV, Pestell RG, Scherer PE, Capozza F, Lisanti MP. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 2011; 11(4): 383–394
https://doi.org/10.4161/cbt.11.4.14101 pmid: 21150282
38 Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005; 123(6): 1001–1011
https://doi.org/10.1016/j.cell.2005.09.030 pmid: 16360031
39 Wang L, Hou Y, Sun Y, Zhao L, Tang X, Hu P, Yang J, Zeng Z, Yang G, Cui X, Liu M. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion. Mol Oncol 2013; 7(6): 1116–1128
https://doi.org/10.1016/j.molonc.2013.08.007 pmid: 24011664
40 Jiang L, Gonda TA, Gamble MV, Salas M, Seshan V, Tu S, Twaddell WS, Hegyi P, Lazar G, Steele I, Varro A, Wang TC, Tycko B. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res 2008; 68(23): 9900–9908
https://doi.org/10.1158/0008-5472.CAN-08-1319 pmid: 19047171
41 Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res 2013; 119: 107–125
https://doi.org/10.1016/B978-0-12-407190-2.00003-4 pmid: 23870510
42 Römer AM, Lühr I, Klein A, Friedl A, Sebens S, Rösel F, Arnold N, Strauss A, Jonat W, Bauer M. Normal mammary fibroblasts induce reversion of the malignant phenotype in human primary breast cancer. Anticancer Res 2013; 33(4): 1525–1536
pmid: 23564794
43 Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 2004; 101(14): 4966–4971
https://doi.org/10.1073/pnas.0401064101 pmid: 15051869
44 Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH, Ravani SA, Zavadil J, Borowsky AD, Jerry DJ, Dunphy KA, Seo JH, Haslam S, Medina D, Barcellos-Hoff MH. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 2011; 19(5): 640–651
https://doi.org/10.1016/j.ccr.2011.03.011 pmid: 21575864
45 Tyan SW, Kuo WH, Huang CK, Pan CC, Shew JY, Chang KJ, Lee EY, Lee WH. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS ONE 2011; 6(1): e15313
https://doi.org/10.1371/journal.pone.0015313 pmid: 21249190
46 Shekhar MP, Werdell J, Santner SJ, Pauley RJ, Tait L. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res 2001; 61(4): 1320–1326
pmid: 11245428
47 Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121(3): 335–348
https://doi.org/10.1016/j.cell.2005.02.034 pmid: 15882617
48 Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6(1): 17–32
https://doi.org/10.1016/j.ccr.2004.06.010 pmid: 15261139
49 Huang M, Li Y, Zhang H, Nan F. Breast cancer stromal fibroblasts promote the generation of CD44+CD24‒ cells through SDF-1/CXCR4 interaction.. J Exp Clin Cancer Res 2010; 29: 80PMID:20569497
50 Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS, Roberts AB, Wakefield LM, Niederhuber JE. Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-β mediated mechanism in a mouse xenograft model of breast cancer. PLoS ONE 2010; 5(3): e9832
https://doi.org/10.1371/journal.pone.0009832 pmid: 20352126
51 Martens JW, Sieuwerts AM, Bolt-deVries J, Bosma PT, Swiggers SJ, Klijn JG, Foekens JA. Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression. Thromb Haemost 2003; 89(2): 393–404
pmid: 12574821
52 Palmieri C, Roberts-Clark D, Assadi-Sabet A, Coope RC, O’Hare M, Sunters A, Hanby A, Slade MJ, Gomm JJ, Lam EW, Coombes RC. Fibroblast growth factor 7, secreted by breast fibroblasts, is an interleukin-1β-induced paracrine growth factor for human breast cells. J Endocrinol 2003; 177(1): 65–81
https://doi.org/10.1677/joe.0.1770065 pmid: 12697038
53 Locatelli A, Lofgren KA, Daniel AR, Castro NE, Lange CA. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Horm Cancer 2012; 3(1-2): 14–25
https://doi.org/10.1007/s12672-011-0097-z pmid: 22124844
54 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013 pmid: 21376230
55 Wang J, Wang J, Sun Y, Song W, Nor JE, Wang CY, Taichman RS. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 2005; 17(12): 1578–1592
https://doi.org/10.1016/j.cellsig.2005.03.022 pmid: 16005185
56 Maeda T, Desouky J, Friedl A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 2006; 25(9): 1408–1412
https://doi.org/10.1038/sj.onc.1209168 pmid: 16247452
57 Raica M, Cimpean AM, Ribatti D. Angiogenesis in pre-malignant conditions. Eur J Cancer 2009; 45(11): 1924–1934
https://doi.org/10.1016/j.ejca.2009.04.007 pmid: 19406633
58 Katz E, Dubois-Marshall S, Sims AH, Gautier P, Caldwell H, Meehan RR, Harrison DJ. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS ONE 2011; 6(2): e17083
https://doi.org/10.1371/journal.pone.0017083 pmid: 21347235
59 Gos M, Miłoszewska J, Przybyszewska M. Epithelial-mesenchymal transition in cancer progression. Postepy Biochem 2009; 55(2): 121–128 (in Polish) PMID:19824467
60 Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-b signalling. Br J Cancer 2014; 110(3): 724–732
https://doi.org/10.1038/bjc.2013.768 pmid: 24335925
61 Soon PS, Kim E, Pon CK, Gill AJ, Moore K, Spillane AJ, Benn DE, Baxter RC. Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr Relat Cancer 2013; 20(1): 1–12
https://doi.org/10.1530/ERC-12-0227 pmid: 23111755
62 Gao MQ, Kim BG, Kang S, Choi YP, Park H, Kang KS, Cho NH. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro. J Cell Sci 2010; 123(Pt 20): 3507–3514
https://doi.org/10.1242/jcs.072900 pmid: 20841377
63 Przybylo JA, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 2007; 39(6): 1082–1088
https://doi.org/10.1016/j.biocel.2007.03.002 pmid: 17416542
64 Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 2009; 27(31): 5287–5297
https://doi.org/10.1200/JCO.2009.23.5556 pmid: 19738110
65 Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436(7047): 123–127
https://doi.org/10.1038/nature03688 pmid: 16001073
66 Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52–67
https://doi.org/10.1016/j.cell.2010.03.015 pmid: 20371345
67 Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 2002; 52(4): 255–264
https://doi.org/10.1046/j.1440-1827.2002.01343.x pmid: 12031080
68 Del Casar JM, González LO, Alvarez E, Junquera S, Marín L, González L, Bongera M, Vázquez J, Vizoso FJ. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res Treat 2009; 116(1): 39–52
https://doi.org/10.1007/s10549-009-0351-z pmid: 19241156
69 Eck SM, Côté AL, Winkelman WD, Brinckerhoff CE. CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Mol Cancer Res 2009; 7(7): 1033–1044
https://doi.org/10.1158/1541-7786.MCR-09-0015 pmid: 19584257
70 Wang TN, Albo D, Tuszynski GP. Fibroblasts promote breast cancer cell invasion by upregulating tumor matrix metalloproteinase-9 production. Surgery 2002; 132(2): 220–225
https://doi.org/10.1067/msy.2002.125353 pmid: 12219015
71 Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 2010; 107(50): 21677–21682
https://doi.org/10.1073/pnas.1016234107 pmid: 21098274
72 Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 2014; 16(1): 321–346
https://doi.org/10.1146/annurev-bioeng-071813-105259 pmid: 25014786
73 Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 2012; 10(11): 1403–1418
https://doi.org/10.1158/1541-7786.MCR-12-0307 pmid: 23024188
74 Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res 2013; 73(23): 6843–6847
https://doi.org/10.1158/0008-5472.CAN-13-1791 pmid: 24265274
75 Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M, Shiraishi T. Role of stromal myofibroblasts in invasive breast cancer: stromal expression of α-smooth muscle actin correlates with worse clinical outcome. Breast Cancer 2012; 19(2): 170–176
https://doi.org/10.1007/s12282-010-0234-5 pmid: 20978953
76 Paulsson J, Sjöblom T, Micke P, Pontén F, Landberg G, Heldin CH, Bergh J, Brennan DJ, Jirström K, Ostman A. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am J Pathol 2009; 175(1): 334–341)
https://doi.org/10.2353/ajpath.2009.081030 pmid: 19498003
77 Ariga N, Sato E, Ohuchi N, Nagura H, Ohtani H. Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer 2001;95(1):67–72PMID:11241314
78 Schoppmann SF, Berghoff A, Dinhof C, Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H, Birner P. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat 2012; 134(1): 237–244
https://doi.org/10.1007/s10549-012-1984-x pmid: 22350732
79 Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 2014; 25: 61–68
https://doi.org/10.1016/j.semcancer.2014.02.006 pmid: 24560651
80 Hasebe T, Tamura N, Okada N, Hojo T, Akashi-Tanaka S, Shimizu C, Tsuda H, Shibata T, Sasajima Y, Iwasaki M, Kinoshita T. p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Hum Pathol 2010; 41(2): 262–270
https://doi.org/10.1016/j.humpath.2009.07.021 pmid: 19836055
81 Shan-Wei W, Kan-Lun X, Shu-Qin R, Li-Li Z, Li-Rong C. Overexpression of caveolin-1 in cancer-associated fibroblasts predicts good outcome in breast cancer. Breast Care (Basel) 2012; 7(6): 477–483
https://doi.org/10.1159/000345464 pmid: 24715830
82 El-Gendi SM, Mostafa MF, El-Gendi AM. Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome. Pathol Oncol Res 2012; 18(2): 459–469
pmid: 22057638
83 Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 2009; 174(6): 2023–2034
https://doi.org/10.2353/ajpath.2009.080873 pmid: 19411448
84 Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP. Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 2010; 10(2): 135–143
https://doi.org/10.4161/cbt.10.2.11983 pmid: 20431349
85 Witkiewicz AK, Casimiro MC, Dasgupta A, Mercier I, Wang C, Bonuccelli G, Jasmin JF, Frank PG, Pestell RG, Kleer CG, Sotgia F, Lisanti MP. Towards a new “stromal-based” classification system for human breast cancer prognosis and therapy. Cell Cycle 2009; 8(11): 1654–1658
https://doi.org/10.4161/cc.8.11.8544 pmid: 19448435
86 Ren M, Liu F, Zhu Y, Li Y, Lang R, Fan Y, Gu F, Zhang X, Fu L.Absence of caveolin-1 expression in carcinoma-associated fibroblasts of invasive micropapillary carcinoma of the breast predicts poor patient outcome. Virchows Arch 2014;465(3):291–298
87 Ranogajec I, Jakić-Razumović J, Puzović V, Gabrilovac J. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med Oncol 2012; 29(2): 561–569
https://doi.org/10.1007/s12032-011-9984-y pmid: 21611838
88 Boström P, Söderström M, Vahlberg T, Söderström KO, Roberts PJ, Carpén O, Hirsimäki P. MMP-1 expression has an independent prognostic value in breast cancer. BMC Cancer 2011; 11(1): 348
https://doi.org/10.1186/1471-2407-11-348 pmid: 21835023
89 Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, Li H, Ning L, Fu L, Niu Y, Niu R, Sun B, Hao X. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 2008; 8(1): 83
https://doi.org/10.1186/1471-2407-8-83 pmid: 18373849
90 Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L, Lindquist S. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 2014; 158(3): 564–578
https://doi.org/10.1016/j.cell.2014.05.045 pmid: 25083868
91 Tchou J, Conejo-Garcia J. Targeting the tumor stroma as a novel treatment strategy for breast cancer: shifting from the neoplastic cell-centric to a stroma-centric paradigm. Adv Pharmacol 2012; 65: 45–61
https://doi.org/10.1016/B978-0-12-397927-8.00003-8 pmid: 22959023
92 Tanaka K, Sano K, Yuba K, Katsumura K, Nakano T, Tanaka K, Kobayashi M, Ikeda T, Abe M. Inhibition of induction of myofibroblasts by interferon γ in a human fibroblast cell line. Int Immunopharmacol 2003; 3(9): 1273–1280
https://doi.org/10.1016/S1567-5769(03)00102-4 pmid: 12890425
93 Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z, Liu F. Inhibition of TGF-b/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 2012; 30(12): 2810–2819
https://doi.org/10.1002/stem.1251 pmid: 23034983
94 Reisfeld RA. The tumor microenvironment: a target for combination therapy of breast cancer. Crit Rev Oncog 2013; 18(1-2): 115–133
https://doi.org/10.1615/CritRevOncog.v18.i1-2.70 pmid: 23237555
95 Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107(5): 1761–1767
https://doi.org/10.1182/blood-2005-08-3182 pmid: 16269611
96 Amornsupak K, Insawang T, Thuwajit P, O-Charoenrat P, Eccles SA, Thuwajit C. Cancer-associated fibroblasts induce high mobility group box 1 and contribute to resistance to doxorubicin in breast cancer cells. BMC Cancer 2014; 14(1): 955
https://doi.org/10.1186/1471-2407-14-955 pmid: 25512109
97 Sun X, Mao Y, Wang J, Zu L, Hao M, Cheng G, Qu Q, Cui D, Keller ET, Chen X, Shen K, Wang J. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene 2014 Jun 9. [Epub ahead of print]
https://doi.org/10.1038/onc.2014.158 PMID:24909173
98 Pontiggia O, Sampayo R, Raffo D, Motter A, Xu R, Bissell MJ, Joffé EB, Simian M. The tumor microenvironment modulates tamoxifen resistance in breast cancer: a role for soluble stromal factors and fibronectin through b1 integrin. Breast Cancer Res Treat 2012; 133(2): 459–471
https://doi.org/10.1007/s10549-011-1766-x pmid: 21935603
99 Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 2012; 14(4): R104
https://doi.org/10.1186/bcr3224 pmid: 22788954
100 Loeffler M, Krüger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 2006; 116(7): 1955–1962
https://doi.org/10.1172/JCI26532 pmid: 16794736
[1] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[2] Huanping Wang, Haitao Meng, Jinghan Wang, Yinjun Lou, Yile Zhou, Peipei Lin, Fenglin Li, Lin Liu, Huan Xu, Min Yang, Jie Jin. Clinical characteristics and prognostic values of 1p32.3 deletion detected through fluorescence in situ hybridization in patients with newly diagnosed multiple myeloma: a single-center study in China[J]. Front. Med., 2020, 14(3): 327-334.
[3] Yanfei Zhang, Xinchun Zhao, Yongchun Zhou, Min Wang, Guangbiao Zhou. Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer[J]. Front. Med., 2020, 14(3): 318-326.
[4] Yue Wang, Jinxia Zhang, Yunfan Wang, Shufang Wang, Yu Zhang, Qi Miao, Fei Gao, Huiying He. Expression status of GATA3 and mismatch repair proteins in upper tract urothelial carcinoma[J]. Front. Med., 2019, 13(6): 730-740.
[5] Wenjing Wang, Shigang Ding, Hejun Zhang, Jun Li, Jun Zhan, Hongquan Zhang. G protein-coupled receptor LGR6 is an independent risk factor for colon adenocarcinoma[J]. Front. Med., 2019, 13(4): 482-491.
[6] Weiqi Rong, Yang Zhang, Lei Yang, Lin Feng, Baojun Wei, Fan Wu, Liming Wang, Yanning Gao, Shujun Cheng, Jianxiong Wu, Ting Xiao. Post-surgical resection prognostic value of combined OPN, MMP7, and PSG9 plasma biomarkers in hepatocellular carcinoma[J]. Front. Med., 2019, 13(2): 250-258.
[7] Yiwen Cao, Zhenhua Liu, Wen Wu, Ying Qian, Qin Shi, Rong Shen, Binshen Ouyang, Pengpeng Xu, Shu Cheng, Jin Ye, Yiming Lu, Chaofu Wang, Chengde Yang, Li Wang, Weili Zhao. Presence of multiple abnormal immunologic markers is an independent prognostic factor of diffuse large B-cell lymphoma[J]. Front. Med., 2019, 13(1): 94-103.
[8] Jing Yue, Bo Zhang, Mingyue Wang, Junning Yao, Yifan Zhou, Ding Ma, Lei Jin. Effect of antitubercular treatment on the pregnancy outcomes and prognoses of patients with genital tuberculosis[J]. Front. Med., 2019, 13(1): 121-125.
[9] Bin Yang, Yan Yu, Jing Chen, Yan Zhang, Ye Yin, Nan Yu, Ge Chen, Shifei Zhu, Haiyan Huang, Yongqun Yuan, Jihui Ai, Xinyu Wang, Kezhen Li. Possibility of women treated with fertility-sparing surgery for non-epithelial ovarian tumors to safely and successfully become pregnant---a Chinese retrospective cohort study among 148 cases[J]. Front. Med., 2018, 12(5): 509-517.
[10] Sasa Nie, Zhe Feng, Lihua Xia, Jiuxu Bai, Fenglin Xiao, Jian Liu, Li Tang, Xiangmei Chen. Risk factors of prognosis after acute kidney injury in hospitalized patients[J]. Front. Med., 2017, 11(3): 393-402.
[11] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[12] Lei Huang,Aman Xu. Detection of digestive malignancies and post-gastrectomy complications via gastrointestinal fluid examination[J]. Front. Med., 2017, 11(1): 20-31.
[13] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[14] Lan Wang,Jueheng Wu,Jie Yuan,Xun Zhu,Hongmei Wu,Mengfeng Li. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
[15] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed