Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (3) : 278-285    https://doi.org/10.1007/s11684-016-0453-z
RESEARCH ARTICLE
iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer
Yiming Ma1,Ting Xiao1,Quan Xu2,Xinxin Shao2,Hongying Wang1,*()
1. State Key Laboratory of Molecular Oncology
2. Department of Gastrointestinal Cancer Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
 Download: PDF(219 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. We aimed to find novel molecules as potential biomarkers for the early diagnosis of CRC. A serum-free conditioned medium was successfully collected from three pairs of CRC tissue and adjacent normal tissue. iTRAQ-based quantitative proteomic analysis was applied to compare the differences in secretome between primary CRC mucosa and adjacent normal mucosa. A total of 145 kinds of proteins were identified. Of these proteins, 29 were significantly different between CRC and normal tissue. Tropomyosin 2 β (TPM2) exhibited the most significant differences; as such, this protein was selected for further validation. Quantitative real-time PCR indicated that the mRNA expression of TPM2 significantly decreased in the CRC tissue compared with the paired adjacent normal tissue. Immunohistochemical analysis also confirmed that TPM2 was barely detected at protein levels in the CRC tissue. In summary, this study revealed potential molecules for future biomarker applications and provided an efficient approach for the differential analysis of cancer-associated secretome. TPM2 may be valuable for the early diagnosis of CRC.

Keywords iTRAQ      secretome      colorectal cancer      TPM2     
Corresponding Author(s): Hongying Wang   
Just Accepted Date: 19 May 2016   Online First Date: 12 June 2016    Issue Date: 30 August 2016
 Cite this article:   
Yiming Ma,Ting Xiao,Quan Xu, et al. iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer[J]. Front. Med., 2016, 10(3): 278-285.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0453-z
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I3/278
Patient No. Age (year) Gender Tumor location Differentiation grade TNM stage
1 53 F Rectum Medium T2N0M0
2 64 M Rectum Medium T3N1M0
3 76 M Rectum Medium T4N2M0
Tab.1  Description of human colorectal cancer samples used in secretome analysis
Fig.1  The conditional media from serum-free primary culture of CRC sample were separated by 10% SDS-PAGE and stained with Coomassie. N: adjacent normal tissue; T: tumor tissue.
Accession No. Gene name Gene symbol MW(Da) Change fold
IPI00910262 Periostin isoform 4 POSTN 83 850 9
IPI00220709 Tropomyosin β chain isoform 2 TPM2 32 989.8 -6.68
IPI00178352 Filamin-C FLNC 291 022 -6.02
IPI00550363 Transgelin TAGLN2 22 391 -4.86
IPI00024095 Annexin A3 ANXA3 36 375 4.03
IPI00337335 Myosin-14 MYH14 228 002 3.66
NA Unnamed protein product NA NA 3.32
IPI00010154 Human rab GDI GDI1 50 583 3.2
IPI00329801 Annexin A5 ANXA5 35 937 3.1
IPI00217966 L-lactate dehydrogenase A chain LDHA 36 689 3.07
NA Unnamed protein product NA NA 2.97
IPI00299301 Desmuslin SYNM 172 768 -2.97
IPI00554788 Cytokeratin 18 KRT18 48 058 2.55
IPI00218733 Cu/Zn-superoxide dismutase SOD1 15 936 2.43
IPI00169383 Phosphoglycerate kinase 1 PGK1 44 615 2.38
IPI00019502 Myosin-9 MYH9 226 532 2.31
IPI00014516 Caldesmon CALD1 93 250 -2.23
IPI00418471 Vimentin VIM 53 652 2.1
IPI00020501 Myosin heavy chain MHY11 227 339 -2.08
IPI00442073 Cysteine and glycine-rich protein 1 CSRP1 20 567 -2.07
IPI00797270 Triosephosphate isomerase TPI1 26 669 2.06
IPI00289334 Actin binding protein homolog ABP-278 FLNB 278 164 1.96
IPI00014898 Plectin PLEC 531 791 1.92
IPI00455315 Annexin A2 isoform 2 ANXA2 40 411 1.85
IPI00940464 Aminoacylase-1 ACY1 45 885 1.84
IPI00218918 Annexin A1 ANXA1 38 714 1.84
NA Unnamed protein product NA NA -1.8
IPI00646773 Gelsolin isoform b GSN 80 641 -1.55
IPI00011201 Mitochondrial malate dehydrogenase 2 ME2 65 444 1.52
Tab.2  Differentially expressed proteins identified in CM from CRC tissue and adjacent normal tissue
Fig.2  Gene ontology analysis of the proteins identified in the conditional medium. (A) The cellular component distribution of identified proteins. (B) The major biological processes enriched by DAVID. Negative log10 of P value is shown on the x-axis.
Fig.3  Validation of TPM2 expression in CRC and adjacent normal tissue by q-PCR and immunohistochemical staining. (A) qPCR analysis showed that the expression of TPM2 significantly decreased in CRC tissue. (B) qPCR analysis revealed that the expression of TPM2 significantly decreased in early-stage CRC tissue, especially T1, T2, and T3 stages. (C) Immunohistochemical staining of TPM2 in CRC tissue and adjacent normal tissue. TPM2 is mainly expressed by stromal cells, not epithelial cells, and the staining of TPM2 is rarely observed in CRC tissue. NC, negative control. (D) Statistical analysis of the immunostaining scores of the immunohistochemically stained TPM2 in 37 CRC samples. **, P<0.01; ***, P<0.001
n Negative Positive P
Gender 0.8064a
Female 13 11 2
Male 24 21 3
Age (year) 0.045b
>60 28 26 2
<60 9 6 3
Position <0.0001ac
Normal mucosa 37 4 33
Tumor 37 32 5
Primary tumor (T) stage 0.3067a
T1?T2 9 9 0
T3?T4 28 23 5
Lymph node (N) metastasis 0.1681a
N0 18 17 1
Nx 19 15 4
Distant metastasis (M) 0.5654a
M0 35 30 5
M1 2 2 0
Tab.3  Relationships between the TPM2 expression in primary CRC and clinical pathological factors
1 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108
https://doi.org/10.3322/caac.21262 pmid: 25651787
2 Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on status of cancer in China, 2011. Chin J Cancer Res 2015; 27(1): 2–12
https://doi.org/10.3978/j.issn.1000-9604.2015.01.06 PMID:25717220
3 Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2008: a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin 2008; 58(3): 161–179
https://doi.org/10.3322/CA.2007.0017 pmid: 18443206
4 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90
https://doi.org/10.3322/caac.20107 pmid: 21296855
5 Jiang X, Wang Y, Wang H, Geng M, Liu YL. Typical symptoms of colorectal cancer and its influence in timely diagnosis. Natl J Med China (Zhonghua Yi Xue Za Zhi) 2013; 93(4): 275–279 (in Chinese)
pmid: 23578507
6 He J, Efron JE. Screening for colorectal cancer. Adv Surg 2011; 45(1): 31–44
https://doi.org/10.1016/j.yasu.2011.03.006 pmid: 21954677
7 Moawad FJ, Maydonovitch CL, Cullen PA, Barlow DS, Jenson DW, Cash BD. CT colonography may improve colorectal cancer screening compliance. AJR Am J Roentgenol 2010; 195(5): 1118–1123
https://doi.org/10.2214/AJR.10.4921 pmid: 20966316
8 Parra-Blanco A, Gimeno-García AZ, Quintero E, Nicolás D, Moreno SG, Jiménez A, Hernández-Guerra M, Carrillo-Palau M, Eishi Y, López-Bastida J. Diagnostic accuracy of immunochemical versus guaiac faecal occult blood tests for colorectal cancer screening. J Gastroenterol 2010; 45(7): 703–712
https://doi.org/10.1007/s00535-010-0214-8 pmid: 20157748
9 Bhatti I, Patel M, Dennison AR, Thomas MW, Garcea G. Utility of postoperative CEA for surveillance of recurrence after resection of primary colorectal cancer. Int J Surg 2015; 16(Pt A):123–128
10 Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg Oncol 2009; 18(1): 15–24
https://doi.org/10.1016/j.suronc.2008.05.008 pmid: 18619834
11 Duffy MJ. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 2001; 47(4): 624–630
pmid: 11274010
12 Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005; 4(4): 409–418
https://doi.org/10.1074/mcp.M500006-MCP200 pmid: 15684407
13 Schmidt A, Aebersold R. High-accuracy proteome maps of human body fluids. Genome Biol 2006; 7(11): 242
https://doi.org/10.1186/gb-2006-7-11-242 pmid: 17140426
14 Liu Z, Zhang Y, Niu Y, Li K, Liu X, Chen H, Gao C. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS ONE 2014; 9(8): e103910
https://doi.org/10.1371/journal.pone.0103910 pmid: 25105762
15 Yao L, Lao W, Zhang Y, Tang X, Hu X, He C, Hu X, Xu LX. Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues. J Proteome Res 2012; 11(6): 3281–3294
https://doi.org/10.1021/pr300020p pmid: 22506683
16 de Wit M, Kant H, Piersma SR, Pham TV, Mongera S, van Berkel MP, Boven E, Pontén F, Meijer GA, Jimenez CR, Fijneman RJ. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics 2014; 99: 26–39 PMID:24418523
https://doi.org/10.1016/j.jprot.2014.01.001
17 Tang HY, Ali-Khan N, Echan LA, Levenkova N, Rux JJ, Speicher DW. A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 2005; 5(13): 3329–3342
https://doi.org/10.1002/pmic.200401275 pmid: 16052622
18 Rai AJ, Gelfand CA, Haywood BC, Warunek DJ, Yi J, Schuchard MD, Mehigh RJ, Cockrill SL, Scott GB, Tammen H, Schulz-Knappe P, Speicher DW, Vitzthum F, Haab BB, Siest G, Chan DW. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005; 5(13): 3262–3277
https://doi.org/10.1002/pmic.200401245 pmid: 16052621
19 Fang X, Zhang WW. Affinity separation and enrichment methods in proteomic analysis. J Proteomics 2008; 71(3): 284–303
https://doi.org/10.1016/j.jprot.2008.06.011 pmid: 18619565
20 Xiao T, Ying W, Li L, Hu Z, Ma Y, Jiao L, Ma J, Cai Y, Lin D, Guo S, Han N, Di X, Li M, Zhang D, Su K, Yuan J, Zheng H, Gao M, He J, Shi S, Li W, Xu N, Zhang H, Liu Y, Zhang K, Gao Y, Qian X, Cheng S. An approach to studying lung cancer-related proteins in human blood. Mol Cell Proteomics 2005; 4(10): 1480–1486
https://doi.org/10.1074/mcp.M500055-MCP200 pmid: 15970581
21 Lou X, Xiao T, Zhao K, Wang H, Zheng H, Lin D, Lu Y, Gao Y, Cheng S, Liu S, Xu N. Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer. J Proteome Res 2007; 6(3): 1083–1092
https://doi.org/10.1021/pr060422t pmid: 17284061
22 Li M, Xiao T, Zhang Y, Feng L, Lin D, Liu Y, Mao Y, Guo S, Han N, Di X, Zhang K, Cheng S, Gao Y. Prognostic significance of matrix metalloproteinase-1 levels in peripheral plasma and tumour tissues of lung cancer patients. Lung Cancer 2010; 69(3): 341–347
https://doi.org/10.1016/j.lungcan.2009.12.007 pmid: 20060194
23 Polisetty RV, Gautam P, Sharma R, Harsha HC, Nair SC, Gupta MK, Uppin MS, Challa S, Puligopu AK, Ankathi P, Purohit AK, Chandak GR, Pandey A, Sirdeshmukh R. LC-MS/MS analysis of differentially expressed glioblastoma membrane proteome reveals altered calcium signaling and other protein groups of regulatory functions. Mol Cell Proteomics 2012; 11(6): 013565
https://doi.org/10.1074/mcp.M111.013565 pmid: 22219345
24 Albrethsen J, Bøgebo R, Gammeltoft S, Olsen J, Winther B, Raskov H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer 2005; 5(1): 8
https://doi.org/10.1186/1471-2407-5-8 pmid: 15656915
25 Ward DG, Suggett N, Cheng Y, Wei W, Johnson H, Billingham LJ, Ismail T, Wakelam MJ, Johnson PJ, Martin A. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer 2006; 94(12): 1898–1905
https://doi.org/10.1038/sj.bjc.6603188 pmid: 16755300
26 de Noo ME, Mertens BJ, Ozalp A, Bladergroen MR, van der Werff MP, van de Velde CJ, Deelder AM, Tollenaar RA. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur J Cancer 2006; 42(8): 1068–1076
https://doi.org/10.1016/j.ejca.2005.12.023 pmid: 16603345
27 Pavlou MP, Diamandis EP. The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 2010; 73(10): 1896–1906
https://doi.org/10.1016/j.jprot.2010.04.003 pmid: 20394844
28 Xue H, Lü B, Zhang J, Wu M, Huang Q, Wu Q, Sheng H, Wu D, Hu J, Lai M. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J Proteome Res 2010; 9(1): 545–555
https://doi.org/10.1021/pr9008817 pmid: 19924834
29 Volmer MW, Stühler K, Zapatka M, Schöneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics 2005; 5(10): 2587–2601
https://doi.org/10.1002/pmic.200401188 pmid: 15912508
30 Shi HJ, Stubbs R, Hood K. Characterization of de novo synthesized proteins released from human colorectal tumour explants. Electrophoresis 2009; 30(14): 2442–2453
https://doi.org/10.1002/elps.200800767 pmid: 19639566
31 Kikuchi Y, Kashima TG, Nishiyama T, Shimazu K, Morishita Y, Shimazaki M, Kii I, Horie H, Nagai H, Kudo A, Fukayama M. Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem Cytochem 2008; 56(8): 753–764
https://doi.org/10.1369/jhc.2008.951061 pmid: 18443362
32 Ben QW, Zhao Z, Ge SF, Zhou J, Yuan F, Yuan YZ. Circulating levels of periostin may help identify patients with more aggressive colorectal cancer. Int J Oncol 2009; 34(3): 821–828
pmid: 19212687
33 Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M, Shao R, Anderson RM, Rich JN, Wang XF. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004; 5(4): 329–339
https://doi.org/10.1016/S1535-6108(04)00081-9 pmid: 15093540
34 Zhang J, Wang K, Zhang J, Liu SS, Dai L, Zhang JY. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res 2011; 10(6): 2863–2872
https://doi.org/10.1021/pr200141c pmid: 21517111
35 Tang HY, Beer LA, Tanyi JL, Zhang R, Liu Q, Speicher DW. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer. J Proteomics 2013; 89: 165–178
https://doi.org/10.1016/j.jprot.2013.06.016 pmid: 23792823
36 Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R, Wu J, Lu JS, Di GH, Ou ZL, Xia QC, Shen ZZ, Shao ZM. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 2006; 6(11): 3352–3368 PMID:16637015
https://doi.org/10.1002/pmic.200500617
[1] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[2] Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front. Med., 2019, 13(1): 83-93.
[3] Liting Jiang,Yinyin Xie,Li Wei,Qi Zhou,Ning Li,Xinquan Jiang,Yiming Gao. iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar cartilage induced by reducing dietary loading[J]. Front. Med., 2017, 11(1): 97-109.
[4] CAO Jie, LI Wanglin, XIA Jie, TANG Weibiao, WANG Hui, CHEN Xiwen, XIAO Huanqing, LI Yuyuan, CHEN Xiaoping, DU Hong, CHEN Shanming. Absence of FHIT expression is associated with apoptosis inhibition in colorectal cancer[J]. Front. Med., 2007, 1(2): 147-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed