Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (4) : 522-527    https://doi.org/10.1007/s11684-017-0526-7
REVIEW
Application of liquid biopsy in precision medicine: opportunities and challenges
Junyun Wang, Shuang Chang, Guochao Li, Yingli Sun()
Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precision medicine for cancer patients aims to adopt the most suitable treatment options during diagnosis and treatment of individuals. Detecting circulating tumor cell (CTC) or circulating tumor DNA (ctDNA) in plasma or serum could serve as liquid biopsy, which would be useful for numerous diagnostic applications. Liquid biopsies can help clinicians screen and detect cancer early, stratify patients to the most suitable treatment and real-time monitoring of treatment response and resistance mechanisms in the tumor, evaluate the risk for metastatic relapse, and estimate prognosis. We summarized the advantages and disadvantages of tissue and liquid biopsies. We also further compared and analyzed the advantages and limitations of detecting CTCs, ctDNAs, and exosomes. Furthermore, we reviewed the literature related with the application of serum or plasma CTCs, ctDNAs, and exosomes for diagnosis and prognosis of cancer. We also analyzed their opportunities and challenges as future biomarkers. In the future, liquid biopsies could be used to guide cancer treatment. They could also provide the ideal scheme to personalize treatment in precision medicine.

Keywords liquid biopsy      circulating tumor cells      cell-free ctDNA      exosomes      precision medicine     
Corresponding Author(s): Yingli Sun   
Just Accepted Date: 02 June 2017   Online First Date: 25 July 2017    Issue Date: 04 December 2017
 Cite this article:   
Junyun Wang,Shuang Chang,Guochao Li, et al. Application of liquid biopsy in precision medicine: opportunities and challenges[J]. Front. Med., 2017, 11(4): 522-527.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0526-7
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I4/522
SubjectAdvantageDisadvantage
Tissue biopsyStandard detection procedure
Specific mutations that are helpful to target therapies
Suffered and invasive
Not real-time detection
Some tumors, such as that in lung, are not accessible for biopsy
Information provided by biopsy is static, and it becomes inaccurate with cancer progression
Needs multiple biopsies and is expensive
Unavailable tumor sample
Intratumor heterogeneity
Inability to obtain tumor samples at different stages of disease
Liquid
biopsy
Non-invasive
Real-time detection
Collects samples repeatedly and multiple detection during treatment
Provides considerably comprehensive information
Responds to surgery and therapy effects
More sensitive as biomarkers than that of tissue biopsy
Significantly low amounts of circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) and considerable amount of blood sample needed
ctDNA and CTC levels remarkably vary among individuals, and they are difficult to detect.
Needs validation in large studies
Confined to the clinical application of advanced cancer
Tab.1  Advantages and disadvantages of tissue and liquid biopsies [2,5,6]
Fig.1  Origin of CTCs and ctDNAs in blood plasma. CtDNAs and exosomes were secreted from necrotic and apoptotic tumor cells, and CTCs were released from tumor tissue. Gene mutation and epigenetic DNA methylation can be detected as diagnostic and prognostic biomarkers of cancer.
Fig.2  Clinical applications of liquid biopsy for precision medicine. CTCs, ctDNAs, and exosomes as liquid biopsy for precision medicine, including screening and early detection of cancer, real-time monitoring of therapy, stratification and therapeutic intervention, therapeutic target and resistance mechanism, risk for metastatic relapse (prognosis), and improvement of drug delivery with exosomes.
SubjectAdvantagesLimitations
CTCsPhenotypic studies of intact cells from tumor, including cell morphology and protein localization
Relevance for metastatic process and disease progression
Allow functional in vitro/in vivo assays
Opportunity for molecular characterization at both cellular and subcellular levels
Allow immunolabeling-based approaches
Complementary with ctDNA: CTCs can escape from current chemotherapy
Potentially influence changes in treatment modalities
Heterogeneity of the CTC populations (e.g., detection of CTCs with tumor-initiating capacity)
Low abundance and fragility
Require considerably sensitive and specific analytic methods
False-negative (due to tumor metastasis) and false-positive results
Multiplicity of technologies used for CTC isolation
ctDNAsSensitivity for detection of disease burden
Complementary with CTCs for detection of minimal residual disease after surgery or therapy with curative intent
Might predict acquired drug resistance
Potentially influence changes in treatment modalities
False-negative/false-positive results (e.g., no specific isolation of ctDNA or mutations of tumor-associated genes in frequent benign diseases)
No functional assays
Lack of standardization of preanalytical conditions
ExosomesAnalyzing RNA, DNA, and protein profiles from tumor cells
Analyzing inflammatory response, stromal, and other systemic changes
Used for drug delivery
Did not analyze the phenotypic studies of cells from tumor
Difficult extraction
Tab.2  Advantages and limitations of detecting CTCs, ctDNAs, and exosomes [20,38,41]
1 Chan KCA, Jiang PY, Zheng YWL, Liao GJW, Sun H, Wong J, Siu SSN, Chan WC, Chan SL, Chan ATC, Lai PBS, Chiu RWK, Lo YMD. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 2013; 59(1): 211–224
https://doi.org/10.1373/clinchem.2012.196014
2 Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10(8): 472–484
https://doi.org/10.1038/nrclinonc.2013.110
3 Brock G, Castellanos-Rizaldos E, Hu L, Coticchia C, Skog J. Liquid biopsy for cancer screening, patient stratification and monitoring. Transl Cancer Res 2015; 4(3): 280–290 doi: 10.3978/j.issn.2218-676X.2015.06.05
4 Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 2016; 164(1–2): 57–68
https://doi.org/10.1016/j.cell.2015.11.050
5 Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6(5): 479–491
https://doi.org/10.1158/2159-8290.CD-15-1483
6 Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014; 32(6): 579–586
https://doi.org/10.1200/JCO.2012.45.2011
7 Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351(8): 781–791
https://doi.org/10.1056/NEJMoa040766
8 Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LWMM, Meropol NJ. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26(19): 3213–3221
https://doi.org/10.1200/JCO.2007.15.8923
9 De Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinic Cancer Res 2008; 14(19):6302–6309 doi: 10.1158/1078-0432.CCR-08-0872
10 Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, Leach SD, Stanger BZ. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148(1–2): 349–361
https://doi.org/10.1016/j.cell.2011.11.025
11 Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559–1564
https://doi.org/10.1126/science.1203543
12 Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn 2015; 17(3): 209–224
https://doi.org/10.1016/j.jmoldx.2015.02.001
13 Bidard FC, Fehm T, Ignatiadis M, Smerage JB, Alix-Panabieres C, Janni W, Messina C, Paoletti C, Muller V, Hayes DF, Piccart M, Pierga JY. Clinical application of circulating tumor cells in breast cancer: overview of the current interventional trials. Cancer Metastasis Rev 2013; 32(1–2): 179–188
https://doi.org/10.1007/s10555-012-9398-0
14 Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science 2013; 341(6151): 1186–1188
https://doi.org/10.1126/science.1235226
15 Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nat Rev Cancer 2014; 14(9): 623–631
https://doi.org/10.1038/nrc3820
16 Schlange T, Pantel K. Potential of circulating tumor cells as blood-based biomarkers in cancer liquid biopsy. Pharmacogenomics 2016; 17(3): 183–186
https://doi.org/10.2217/pgs.15.163
17 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37(3): 646–650 
18 Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol 1987; 23(6): 707–712
https://doi.org/10.1016/0277-5379(87)90266-5
19 Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia XY, Peng WM, Sandhu SK, Olmos D, Riisnaes R, McCormack R, Burzykowski T, Kheoh T, Fleisher M, Buyse M, de Bono JS. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol 2015; 33(12): 1348–1355
https://doi.org/10.1200/JCO.2014.55.3487
20 Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2016; 7(30): 48832–48841 doi: 10.18632/oncotarget.9453
21 Moran S, Martínez-Cardús A, Sayols S, Musulén E, Balañá C, Estival-Gonzalez A, Moutinho C, Heyn H, Diaz-Lagares A, de Moura MC, Stella GM, Comoglio PM, Ruiz-Miró M, Matias-Guiu X, Pazo-Cid R, Antón A, Lopez-Lopez R, Soler G, Longo F, Guerra I, Fernandez S, Assenov Y, Plass C, Morales R, Carles J, Bowtell D, Mileshkin L, Sia D, Tothill R, Tabernero J, Llovet JM, Esteller M. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol 2016; 17(10):1386–1395 doi: 10.1016/S1470-2045(16)30297-2
22 Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 2012; 13(10): 679–692
https://doi.org/10.1038/nrg3270
23 Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate 2012; 72(11): 1248–1261
https://doi.org/10.1002/pros.22459
24 Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368(13): 1199–1209
https://doi.org/10.1056/NEJMoa1213261
25 Kidess E, Jeffrey SS. Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? Genome Med 2013; 5(8):70 doi: 10.1186/gm474
26 Tan CR, Zhou L, El-Deiry WS. Circulating tumor cells versus circulating tumor DNA in colorectal cancer: pros and cons. Curr Colorectal Cancer Rep 2016; 12(3): 151–161
https://doi.org/10.1007/s11888-016-0320-y
27 Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang YX, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao YC, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SKN, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih IM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie JN, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing DM, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Luis AJ. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6(224): 224ra24
https://doi.org/10.1126/scitranslmed.3007094
28 Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 2010; 11(3): 191–203
https://doi.org/10.1038/nrg2732
29 Yong E. Cancer biomarkers: written in blood. Nature 2014; 511(7511): 524–526
https://doi.org/10.1038/511524a
30 Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J. Intercellular transfer of the oncogenic receptor EGFrvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10(5): 219–624 doi: 10.1038/ncb1725
31 Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Branski P, Ratajczak MZ, Zembala M. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 2006; 55(7): 808–818
https://doi.org/10.1007/s00262-005-0075-9
32 Miranda KC, Bond DT, McKee M, Skog J, Paunescu TG, Da Silva N, Brown D, Russo LM. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 2010; 78(2): 191–199
https://doi.org/10.1038/ki.2010.106
33 Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, Breakefield XO, Carter BS, Skog J. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 2012; 12(1): 22
https://doi.org/10.1186/1471-2407-12-22
34 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654–659
https://doi.org/10.1038/ncb1596
35 van der Vos KE, Balaj L, Skog J, Breakefield XO. Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 2011; 31(6): 949–959
https://doi.org/10.1007/s10571-011-9697-y
36 Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523(7559): 177–182
https://doi.org/10.1038/nature14581
37 Williams C, Rodriguez-Barrueco R, Silva JM, Zhang WJ, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014; 24(6): 766–769
https://doi.org/10.1038/cr.2014.44
38 Syn N, Wang LZ, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci 2016; 37(7): 606–617
https://doi.org/10.1016/j.tips.2016.04.006
39 Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan JD, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang YB, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18(6): 883–891
https://doi.org/10.1038/nm.2753
40 Ilie M, Hofman V, Long E, Bordone O, Selva E, Washetine K, Marquette CH, Hofman P. Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2014; 2(11): 107 doi: 10.3978/j.issn.2305-5839.2014.08.11
41 Pantel K, Alix-Panabieres C. Liquid biopsy: potential and challenges. Mol Oncol 2016; 10(3): 371–373
https://doi.org/10.1016/j.molonc.2016.01.009
42 Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Jørgen Labori K, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527(7578): 329–335
https://doi.org/10.1038/nature15756
[1] Xin Qin, Ping Zhang. ECRG4: a new potential target in precision medicine[J]. Front. Med., 2019, 13(5): 540-546.
[2] Yingyan Yu. Molecular classification and precision therapy of cancer: immune checkpoint inhibitors[J]. Front. Med., 2018, 12(2): 229-235.
[3] Daiming Fan. Holistic integrative medicine: toward a new era of medical advancement[J]. Front. Med., 2017, 11(1): 152-159.
[4] Zhiping Yang. Do not let precision medicine be kidnapped[J]. Front. Med., 2015, 9(4): 512-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed