Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 174-181    https://doi.org/10.1007/s11684-017-0544-5
RESEARCH ARTICLE
Prevalence of vitamin D deficiency in girls with idiopathic central precocious puberty
Yue Zhao1, Wenjun Long1, Caiqi Du1, Huanhuan Yang1, Shimin Wu1, Qin Ning2, Xiaoping Luo1()
1. Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The relationship between vitamin D deficiency and idiopathic central precocious puberty (ICPP) has been recently documented. In this study, 280 girls diagnosed with ICPP and 188 normal puberty control girls of similar ages were enrolled and retrospectively studied. The ICPP group had significantly lower serum 25-hydroxyvitamin D (25[OH]D) levels than the control group. Furthermore, a nonlinear relationship was found between serum 25[OH]D and ICPP, and a cut-off point for serum 25[OH]D was found at 31.8 ng/ml for ICPP with and without adjusting the different confounding factors. Girls with serum 25[OH]D≥31.8 ng/ml had a lower odds ratio (unadjusted: OR 0.36, 95% CI 0.15 to 0.83, P <0.05; height and weight adjusted: OR 0.44, 95% CI 0.18 to 1.08, P = 0.072; BMI adjusted: OR 0.36, 95% CI 0.16 to 0.84, P <0.05). The ICPP subjects with 25[OH]D deficiency had a higher body mass index (BMI) than the subjects from the two other subgroups. Correlation analysis showed that vitamin D level is correlated with BMI and some metabolic parameters in the ICPP group. Our study suggested that vitamin D status may be associated with ICPP risk and may have a threshold effect on ICPP.

Keywords idiopathic central precocious puberty      threshold effects      vitamin D status     
Corresponding Author(s): Xiaoping Luo   
Just Accepted Date: 21 June 2017   Online First Date: 09 August 2017    Issue Date: 02 April 2018
 Cite this article:   
Yue Zhao,Wenjun Long,Caiqi Du, et al. Prevalence of vitamin D deficiency in girls with idiopathic central precocious puberty[J]. Front. Med., 2018, 12(2): 174-181.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0544-5
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I2/174
Parameter ICPP (n = 280) Control (n = 188) P
CA (year) 8.50±0.87 8.43±0.82 0.35
Height (cm) 134.74±6.83 129.59±6.59 <0.001
Weight (kg) 30.97±6.06 28.45±5.61 <0.001
BW (kg) 3.20±0.52 3.23±0.48 0.58
BMI (kg/m2) 16.94±2.24 16.81±2.26 0.53
BMI SDS 0.95±1.29 1.07±1.46 0.35
BA (year) 10.03±0.98 8.76±1.11 <0.001
BA-CA (year) 1.57±0.85 1.09±0.79 <0.001
CA-Height-SDS 0.88±1.05 0.82±1.05 0.50
25[OH]D (ng/ml) 19.36±6.15 20.98±7.60 <0.05
25[OH]D status, % (n)
?Insufficiency (<30 ng/ml) 93.2% (261) 87.2% (164) <0.05 (c2 = 4.82)
?Sufficiency (≥30 ng/ml) 6.8% (19) 12.8% (24)
Tab.1  Clinical characteristics of the ICPP and control groups
Fig.1  The relationship between 25[OH]D and ICPP. The relationship between serum 25[OH]D and the groups was analyzed by GAM. A nonlinear relationship between them was observed (confounding factors unadjusted).
Inflection point of 25[OH]D (ng/ml) ICPP
Model I? Model II? Model III?
OR (95% CI) P OR (95% CI) P OR (95% CI) P
<31.8 0.99 (0.95, 1.02) 0.37 1.00 (0.96, 1.03) 0.84 0.99 (0.95, 1.02) 0.42
≥31.8 0.67 (0.45, 1.00) <0.05 0.67 (0.42, 1.06) 0.09 0.67 (0.45, 1.00) <0.05
Tab.2  Threshold effect analysis of 25[OH]D on ICPP by two-piecewise linear regression
25[OH]D (ng/ml) ICPP
Model I Model II Model III
OR (95% CI) P OR (95% CI) P OR (95% CI) P
<31.8 1.0 1.0 1.0
≥31.8 0.36 (0.15, 0.83)<0.05 0.44 (0.18, 1.08) 0.072 0.36 (0.16, 0.84)<0.05
Tab.3  The multivariate analysis by logistic regression test to analyze the relationship between vitamin D and ICPP
Parameters 25[OH]D status ?P
Deficiency (n = 146) Insufficiency (n = 115) Sufficiency (n = 19)
CA (year) 8.70±0.85 8.33±0.83 8.15±1.07 <0.01
Height (cm) 135.94±6.56 133.52±6.87 132.68±7.32 <0.01
Weight (kg) 32.07±6.47 29.81±5.43 29.44±4.82 <0.01
BW (kg) 3.20±0.54 3.21±0.51 3.21±0.44 0.89
BMI (kg/m2) 17.23±2.44 16.62±1.96 16.68±2.03 0.08
BMI SDS 1.08±1.40 0.81±1.16 0.85±1.11 0.25
BA (year) 10.16±0.95 9.88±0.98 9.86±1.17 0.053
BA-CA (year) 1.53±0.84 1.60±0.88 1.74±0.70 0.62
CA-Height-SDS 0.90±1.03 0.87±1.06 0.86±1.25 0.97
25[OH]D (ng/ml) 14.59±3.32 23.71±2.95 30.73±4.68 <0.001
Basal LH (mIU/ml) 0.78 (0.31–1.91) 0.58 (0.26–1.16) 0.52 (0.21–1.07) <0.05
LH peak (mIU/ml) 17.89 (10.58–29.82) 18.25 (10.95–28.82) 14.87 (10.98–20.16) 0.67
Basal FSH (mIU/ml) 3.90 (2.54–5.74) 3.35 (2.21–4.96) 3.24 (1.77–4.06) <0.05
FSH peak (mIU/ml) 13.10 (10.78–18.57) 15.18 (11.59–19.11) 13.38 (9.32–17.94) 0.28
Peak LH/FSH ratio 1.19 (0.85–1.70) 1.13 (0.75–1.73) 1.51 (0.71–1.62) 0.68
E2 (pg/ml) 20.47 (9.48–41.26) 18.70 (7.05–35.29) 18.90 (7.95–31.12) 0.27
T (nmol/L) 0.23 (0.01–0.63) 0.01 (0.01–0.44) 0.04 (0.01–0.31) <0.05
IGF-1 (ng/ml) 271.50 (192.75–435.50) 249.00 (198.00–288.00) 203.50 (186.75–295.50) 0.28
FINS (mIU/L) 5.75 (3.88–7.93) 5.50 (3.90–7.55) 4.10 (2.35–6.53) 0.17
FBG (mmol/L) 4.73 (4.51–5.00) 4.82 (4.53–5.08) 4.71 (4.46–5.00) 0.47
HOMA-IR 1.20 (0.79–1.72) 1.13 (0.81–1.61) 0.88 (0.50–1.43) 0.23
T-Cho (mmol/L) 3.39 (3.09–3.78) 3.54 (3.22–3.85) 3.34 (3.13–3.74) 0.26
TG (mmol/L) 0.78 (0.57–0.97) 0.77 (0.56–0.99) 0.69 (0.56–1.03) 0.83
HDL (mmol/L) 1.23 (1.07–1.38) 1.27 (1.11–1.41) 1.32 (1.25–1.38) 0.092
LDL (mmol/L) 1.93 (1.68–2.27) 2.02 (1.75–2.40) 1.81 (1.46–2.22) 0.085
apoA1 (g/L) 1.27 (1.16–1.43) 1.32 (1.20–1.40) 1.35 (1.25–1.46) 0.12
apoB (g/L) 0.58 (0.50–0.67) 0.60 (0.51–0.67) 0.51 (0.47–0.67) 0.28
Tab.4  Characteristics of ICPP subjects stratified according to 25[OH]D status
Parameters 25[OH]D (ng/ml)
β 95% CI P
BA (year) −0.80 (−1.57, −0.03) <0.05
Weight (kg) −0.18 (−0.29, −0.06) <0.05
Height (cm) −0.11 (−0.22, 0.00) 0.059
BMI (kg/m2) −0.42 (−0.73, −0.11) <0.05
BMI-SDS −0.67 (−1.20, −0.14) <0.05
Basal LH (mIU/ml) −0.16 (−0.50, 0.17) 0.340
Basal FSH (mIU/ml) −0.58 (−0.93, −0.24) <0.05
T (nmol/L) −0.91 (−2.68, 0.85) 0.312
E2 (pg/ml) −0.03 (−0.06, 0.00) 0.075
T-Cho (mmol/L) 1.11 (−0.15, 2.38) 0.085
TG (mmol/L) −0.99 (−2.75, 0.77) 0.273
HDL (mmol/L) 3.58 (0.65, 6.51) <0.05
LDL (mmol/L) 0.57 (−0.85, 1.99) 0.432
apoA1 (g/L) 5.32 (1.48, 9.16) <0.05
apoB (g/L) 0.02 (−4.03, 4.06) 0.994
IRI −0.18 (−0.39, 0.04) 0.105
FBG 0.51 (−1.15, 2.18) 0.545
HOMA-IR −0.08 (−0.17, 0.02) 0.109
Tab.5  Adjusted association between 25[OH]D and parameters of ICPP group
1 Harel Z, Flanagan P, Forcier M, Harel D. Low vitamin D status among obese adolescents: prevalence and response to treatment. J Adolesc Health 2011; 48(5): 448–452
https://doi.org/10.1016/j.jadohealth.2011.01.011 pmid: 21501802
2 Roth CL, Elfers C, Kratz M, Hoofnagle AN. Vitamin d deficiency in obese children and its relationship to insulin resistance and adipokines. J Obes 2011; 2011: 495101
3 Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001-2006. Am J Clin Nutr 2011; 94(1): 225–233
https://doi.org/10.3945/ajcn.111.013516 pmid: 21613551
4 Madden K, Feldman HA, Smith EM, Gordon CM, Keisling SM, Sullivan RM, Hollis BW, Agan AA, Randolph AG. Vitamin D deficiency in critically ill children. Pediatrics 2012; 130(3): 421–428
https://doi.org/10.1542/peds.2011-3328 pmid: 22869836
5 Pilz S, Verheyen N, Grübler MR, Tomaschitz A, März W. Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol 2016; 13(7): 404–417
https://doi.org/10.1038/nrcardio.2016.73 pmid: 27150190
6 Temmerman JC. Vitamin D and cardiovascular disease. J Am Coll Nutr 2011; 30(3): 167–170
https://doi.org/10.1080/07315724.2011.10719956 pmid: 21896873
7 Nicholas C, Davis J, Fisher T, Segal T, Petti M, Sun Y, Wolfe A, Neal-Perry G. Maternal vitamin D deficiency programs reproductive dysfunction in female mice offspring through adverse effects on the neuroendocrine axis. Endocrinology 2016; 157(4): 1535–1545
https://doi.org/10.1210/en.2015-1638 pmid: 26741195
8 Knight JA, Wong J, Blackmore KM, Raboud JM, Vieth R. Vitamin D association with estradiol and progesterone in young women. Cancer Causes Control 2010; 21(3): 479–483
https://doi.org/10.1007/s10552-009-9466-0 pmid: 19916051
9 Villamor E, Marin C, Mora-Plazas M, Baylin A. Vitamin D deficiency and age at menarche: a prospective study. Am J Clin Nutr 2011; 94(4): 1020–1025
https://doi.org/10.3945/ajcn.111.018168 pmid: 21831989
10 Chew A, Harris SS. Does vitamin D affect timing of menarche? Nutr Rev 2013; 71(3): 189–193
https://doi.org/10.1111/nure.12015 pmid: 23452286
11 Lee HS, Kim YJ, Shim YS, Jeong HR, Kwon E, Hwang JS. Associations between serum vitamin D levels and precocious puberty in girls. Ann Pediatr Endocrinol Metab 2014; 19(2): 91–95
https://doi.org/10.6065/apem.2014.19.2.91 pmid: 25077092
12 Oliveira RM, Novaes JF, Azeredo LM, Cândido AP, Leite IC. Association of vitamin D insufficiency with adiposity and metabolic disorders in Brazilian adolescents. Public Health Nutr 2014; 17(4): 787–794
https://doi.org/10.1017/S1368980013001225 pmid: 23659537
13 Walsh JS, Evans AL, Bowles S, Naylor KE, Jones KS, Schoenmakers I, Jacques RM, Eastell R. Free 25-hydroxyvitamin D is low in obesity, but there are no adverse associations with bone health. Am J Clin Nutr 2016; 103(6): 1465–1471
https://doi.org/10.3945/ajcn.115.120139 pmid: 27169839
14 Colmenares A, Gunczler P, Lanes R. Higher prevalence of obesity and overweight without an adverse metabolic profile in girls with central precocious puberty compared to girls with early puberty, regardless of GnRH analogue treatment. Int J Pediatr Endocrinol 2014; 2014(1): 5
https://doi.org/10.1186/1687-9856-2014-5 pmid: 24742263
15 Burt Solorzano CM, McCartney CR. Obesity and the pubertal transition in girls and boys. Reproduction 2010; 140(3): 399–410
https://doi.org/10.1530/REP-10-0119 pmid: 20802107
16 Subspecialty Group of Endocrinologic HaMD, the Society of Pediatrics, Chinese Medical Association. Consensus statement for the diagnosis and treatment of central precocious puberty (2015). Chin J Pediatr (Zhonghua Er Ke Za Zhi) 2015; 53(6):412–418 (in Chinese)
17 Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 2011; 96(1): 53–58
https://doi.org/10.1210/jc.2010-2704 pmid: 21118827
18 Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911–1930
https://doi.org/10.1210/jc.2011-0385 pmid: 21646368
19 Fu JF, Liang JF, Zhou XL, Prasad HC, Jin JH, Dong GP, Rose SR. Impact of BMI on gonadorelin-stimulated LH peak in premenarcheal girls with idiopathic central precocious puberty. Obesity (Silver Spring) 2015; 23(3): 637–643
https://doi.org/10.1002/oby.21010 pmid: 25645648
20 Greulich WW, Pyle SI. Radiologic Atlas of Skeletal Development of the Hand and Wrist. Stanford, California: Stanford University Press 1959,91(1): 53
21 Brown RJ, Yanovski JA. Estimation of insulin sensitivity in children: methods, measures and controversies. Pediatr Diabetes 2014; 15(3): 151–161
https://doi.org/10.1111/pedi.12146 pmid: 24754463
22 Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Manson JE, Mayne ST, Ross AC, Shapses SA, Taylor CL. IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab 2012; 97(4): 1146–1152
https://doi.org/10.1210/jc.2011-2218 pmid: 22442278
23 Hollis BW, Wagner CL. Normal serum vitamin D levels. N Engl J Med 2005; 352(5): 515–516
https://doi.org/10.1056/NEJM200502033520521 pmid: 15689596
24 Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr 2005; 135(2): 317–322
pmid: 15671234
25 Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000; 141(4): 1317–1324
https://doi.org/10.1210/endo.141.4.7403 pmid: 10746634
26 Johnson LE, DeLuca HF. Reproductive defects are corrected in vitamin D-deficient female rats fed a high calcium, phosphorus and lactose diet. J Nutr 2002; 132(8): 2270–2273
pmid: 12163674
27 Dicken CL, Israel DD, Davis JB, Sun Y, Shu J, Hardin J, Neal-Perry G. Peripubertal vitamin D(3) deficiency delays puberty and disrupts the estrous cycle in adult female mice. Biol Reprod 2012; 87(2): 51
https://doi.org/10.1095/biolreprod.111.096511 pmid: 22572998
28 Kitagawa I, Kitagawa Y, Kawase Y, Nagaya T, Tokudome S. Advanced onset of menarche and higher bone mineral density depending on vitamin D receptor gene polymorphism. Eur J Endocrinol 1998; 139(5): 522–527
https://doi.org/10.1530/eje.0.1390522 pmid: 9849817
29 Gilbert-Diamond D, Baylin A, Mora-Plazas M, Marin C, Arsenault JE, Hughes MD, Willett WC, Villamor E. Vitamin D deficiency and anthropometric indicators of adiposity in school-age children: a prospective study. Am J Clin Nutr 2010; 92(6): 1446–1451
https://doi.org/10.3945/ajcn.2010.29746 pmid: 20926524
30 Gutiérrez Medina S, Gavela-Pérez T, Domínguez-Garrido MN, Gutiérrez-Moreno E, Rovira A, Garcés C, Soriano-Guillén L. The influence of puberty on vitamin D status in obese children and the possible relation between vitamin D deficiency and insulin resistance. J Pediatr Endocrinol Metab 2015; 28(1-2): 105–110
https://doi.org/10.1515/jpem-2014-0033 pmid: 25153219
31 Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72(3): 690–693
pmid: 10966885
32 Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007; 92(6): 2017–2029
https://doi.org/10.1210/jc.2007-0298 pmid: 17389701
33 Shin YH, Kim KE, Lee C, Shin HJ, Kang MS, Lee HR, Lee YJ. High prevalence of vitamin D insufficiency or deficiency in young adolescents in Korea. Eur J Pediatr 2012; 171(10): 1475–1480
https://doi.org/10.1007/s00431-012-1746-0 pmid: 22562162
34 Breen ME, Laing EM, Hall DB, Hausman DB, Taylor RG, Isales CM, Ding KH, Pollock NK, Hamrick MW, Baile CA, Lewis RD. 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J Clin Endocrinol Metab 2011; 96(1): E89–E98
https://doi.org/10.1210/jc.2010-0595 pmid: 20962027
35 Daftary SS, Gore AC. IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Exp Biol Med (Maywood) 2005; 230(5): 292–306
https://doi.org/10.1177/153537020523000503 pmid: 15855296
36 Ciresi A, Cicciò F, Giordano C. High prevalence of hypovitaminosis D in Sicilian children affected by growth hormone deficiency and its improvement after 12 months of replacement treatment. J Endocrinol Invest 2014; 37(7): 631–638
https://doi.org/10.1007/s40618-014-0084-7 pmid: 24789543
37 Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res 2010; 25(8): 1711–1723
https://doi.org/10.1002/jbmr.65 pmid: 20200981
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed