Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (1) : 15-19    https://doi.org/10.1007/s11684-010-0110-x
REVIEW
Bioartificial liver devices: Perspectives on the state of the art
Yi-Tao DING(), MM, Xiao-Lei SHI, MD
Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of the Nanjing University Medical School, Nanjing 210008, China
 Download: PDF(93 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients’ own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells’ viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.

Keywords acute liver failure      bioartificial livers      hepatocyte      bioreactor     
Corresponding Author(s): DING Yi-Tao,Email:yitaoding@hotmail.com   
Issue Date: 05 March 2011
 Cite this article:   
Yi-Tao DING,MM, Xiao-Lei SHI, MD. Bioartificial liver devices: Perspectives on the state of the art[J]. Front Med, 2011, 5(1): 15-19.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-010-0110-x
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I1/15
1 Pathikonda M, Munoz S J. Acute liver failure. Ann Hepatol , 2010, 9(1): 7-14
pmid:20308717
2 Gerlach J C, Zeilinger K, Patzer Ii J F. Bioartificial liver systems: why, what, whither? Regen Med , 2008, 3(4): 575-595
pmid:18588477
3 Chamuleau R A, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis , 2005, 20(4): 327-335
pmid:16382343
4 Poyck P P, Hoekstra R, van Wijk A C, Attanasio C, Calise F, Chamuleau R A, van Gulik T M. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Liver Transpl , 2007, 13(4): 589-598
pmid:17394165
5 Sauer I M, Zeilinger K, Obermayer N, Pless G, Grünwald A, Pascher A, Mieder T, Roth S, Goetz M, Kardassis D, Mas A, Neuhaus P, Gerlach J C. Primary human liver cells as source for modular extracorporeal liver support—a preliminary report. Int J Artif Organs , 2002, 25(10): 1001-1005
pmid:12456042
6 Wang H H, Wang Y J, Liu H L, Liu J, Huang Y P, Guo H T, Wang Y M. Detection of PERV by polymerase chain reaction and its safety in bioartificial liver support system. World J Gastroenterol , 2006, 12(8): 1287-1291
pmid:16534887
7 Hoekstra R, Chamuleau R A. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs , 2002, 25(3): 182-191
pmid:11999190
8 Kobayashi N, Okitsu T, Nakaji S, Tanaka N. Hybrid bioartificial liver: establishing a reversibly immortalized human hepatocyte line and developing a bioartificial liver for practical use. J Artif Organs , 2003, 6(4): 236-244
pmid:14691665
9 Fonsato V, Herrera M B, Buttiglieri S, Gatti S, Camussi G, Tetta C. Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Eng Part C Methods , 2010, 16(1): 123-132
pmid:19397473
10 Sharma R, Greenhough S, Medine C N, Hay D C. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol , 2010,
doi:10.1155/2010/236147
doi: 10.1155/2010/236147
11 Kobayashi N, Westerman K A, Tanaka N, Fox I J, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol , 2001, 6(4): 293-300
pmid:11900607
12 Watanabe T, Shibata N, Westerman K A, Okitsu T, Allain J E, Sakaguchi M, Totsugawa T, Maruyama M, Matsumura T, Noguchi H, Yamamoto S, Hikida M, Ohmori A, Reth M, Weber A, Tanaka N, Leboulch P, Kobayashi N. Establishment of immortalized human hepatic stellate scavenger cells to develop bioartificial livers. Transplantation , 2003, 75(11): 1873-1880
pmid:12811248
13 Totsugawa T, Yong C, Rivas-Carrillo J D, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Westerman K A, Kohara M, Reth M, Tanaka N, Leboulch P, Kobayashi N. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol , 2007, 47(1): 74-82
pmid:17434229
14 Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant , 2006, 15(10): 873-880
pmid:17299991
15 Thomas R J, Bennett A, Thomson B, Shakesheff K M. Hepatic stellate cells on poly(DL-lactic acid) surfaces control the formation of 3D hepatocyte co-culture aggregates in vitro. Eur Cell Mater , 2006, 11: 16-26 , discussion 26
pmid:16435280
16 Nedredal G I, Elvevold K, Ytreb? L M, Fuskev?g O M, Pettersen I, Bertheussen K, Langbakk B, Smedsr?d B, Revhaug A. Significant contribution of liver nonparenchymal cells to metabolism of ammonia and lactate and cocultivation augments the functions of a bioartificial liver. Am J Physiol Gastrointest Liver Physiol , 2007, 293(1): G75-G83
pmid:17363468
17 Gu J, Shi X, Zhang Y, Ding Y. Heterotypic interactions in the preservation of morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem cells in vitro. J Cell Physiol , 2009, 219(1): 100-108
pmid:19086033
18 Gu J, Shi X, Chu X, Zhang Y, Ding Y. Contribution of bone marrow mesenchymal stem cells to porcine hepatocyte culture in vitro. Biochem Cell Biol , 2009, 87(4): 595-604
pmid:19767823
19 Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y. Establishment of a three-dimensional co-culture system by porcine hepatocytes and bone marrow mesenchymal stem cells in vitro. Hepatol Res , 2009, 39(4): 398-407
pmid:19207578
20 Allen J W, Hassanein T, Bhatia S N. Advances in bioartificial liver devices. Hepatology , 2001, 34(3): 447-455
pmid:11526528
21 Park J K, Lee D H. Bioartificial liver systems: current status and future perspective. J Biosci Bioeng , 2005, 99(4): 311-319
pmid:16233796
22 Park J, Li Y, Berthiaume F, Toner M, Yarmush M L, Tilles A W. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioeng , 2008, 99(2): 455-467
pmid:17626294
23 Kinasiewicz A, Smietanka A, Gajkowska B, Werynski A. Impact of oxygenation of bioartificial liver using perfluorocarbon emulsion perftoran on metabolism of human hepatoma C3A cells. Artif Cells Blood Substit Immobil Biotechnol , 2008, 36(6): 525-534
pmid:19101829
24 Sauer I M, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Müller A R, Steinmüller T, Denner J, Neuhaus P, Gerlach J C. Clinical extracorporeal hybrid liver support—phase I study with primary porcine liver cells. Xenotransplantation , 2003, 10(5): 460-469
pmid:12950989
25 Poyck P P, Mareels G, Hoekstra R, van Wijk A C, van der Hoeven T V, van Gulik T M, Verdonck P R, Chamuleau R A. Enhanced oxygen availability improves liver-specific functions of the AMC bioartificial liver. Artif Organs , 2008, 32(2): 116-126
pmid:18005273
26 De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog , 2000, 16(1): 102-108
pmid:10662497
27 Sullivan J P, Gordon J E, Palmer A F. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor. Biotechnol Bioeng , 2006, 93(2): 306-317
pmid:16161160
28 Sullivan J P, Gordon J E, Bou-Akl T, Matthew H W, Palmer A F. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cells Blood Substit Immobil Biotechnol , 2007, 35(6): 585-606
pmid:18097786
29 Sullivan J P, Harris D R, Palmer A F. Convection and hemoglobin-based oxygen carrier enhanced oxygen transport in a hepatic hollow fiber bioreactor. Artif Cells Blood Substit Immobil Biotechnol , 2008, 36(4): 386-402
pmid:18649173
30 Chu X H, Shi X L, Feng Z Q, Gu Z Z, Ding Y T. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett , 2009, 31(3): 347-352
pmid:19037598
31 Feng Z Q, Chu X, Huang N P, Wang T, Wang Y, Shi X, Ding Y, Gu Z Z. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials , 2009, 30(14): 2753-2763
pmid:19232710
32 Chu X H, Shi X L, Feng Z Q, Gu J Y, Xu H Y, Zhang Y, Gu Z Z, Ding Y T. In vitro evaluation of a multi-layer radial-flow bioreactor based on galactosylated chitosan nanofiber scaffolds. Biomaterials , 2009, 30(27): 4533-4538
pmid:19500837
33 Park J, Berthiaume F, Toner M, Yarmush M L, Tilles A W. Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol Bioeng , 2005, 90(5): 632-644
pmid:15834948
35 Hochleitner B, Hengster P, Bucher H, Ladurner R, Schneeberger S, Krismer A, Kleinsasser A, Barnas U, Klima G, Margreiter R. Significant survival prolongation in pigs with fulminant hepatic failure treated with a novel microgravity-based bioartificial liver. Artif Organs , 2006, 30(12): 906-914
pmid:17181831
36 Hochleitner B, Hengster P, Duo L, Bucher H, Klima G, Margreiter R. A novel bioartificial liver with culture of porcine hepatocyte aggregates under simulated microgravity. Artif Organs , 2005, 29(1): 58-66
pmid:15644085
37 Shinohara H, Shimada M, Ikemoto T, Morine Y, Imura S, Fujii M, Imaizumi T, Murayama M, Aiba Y. New type of artificial liver support system (ALSS) using the photocatalytic effect of titanium oxide. Dig Dis Sci , 2007, 52(9): 2271-2275
pmid:17431780
38 Sussman N L, Gislason G T, Conlin C A, Kelly J H. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs , 1994, 18(5): 390-396
pmid:8037614
39 Watanabe F D, Mullon C J, Hewitt W R, Arkadopoulos N, Kahaku E, Eguchi S, Khalili T, Arnaout W, Shackleton C R, Rozga J, Solomon B, Demetriou A A. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg , 1997, 225(5): 484-491 , discussion 491-494
pmid:9193176
40 Patzer J F, Mazariegos G V, Lopez R. Preclinical evaluation of the Excorp Medical, Inc., bioartifical liver support system. Am Coll Surg , 2002, 195: 299-310
41 Morsiani E, Pazzi P, Puviani A C, Brogli M, Valieri L, Gorini P, Scoletta P, Marangoni E, Ragazzi R, Azzena G, Frazzoli E, Di Luca D, Cassai E, Lombardi G, Cavallari A, Faenza S, Pasetto A, Girardis M, Jovine E, Pinna A D. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs , 2002, 25(3): 192-202
pmid:11999191
42 Ding Y T, Qiu Y D, Chen Z, Xu Q X, Zhang H Y, Tang Q, Yu D C. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol , 2003, 9(4): 829-832
pmid:12679942
43 Xu Q, Yu D, Qiu Y, Zhang H, Ding Y. Function of a new internal bioartificial liver: an in vitro study. Ann Clin Lab Sci , 2003, 33(3): 306-312
pmid:12956446
[1] Cong Tong, Xinsen Xu, Chang Liu, Tianzheng Zhang, Kai Qu. Assessment of liver volume variation to evaluate liver function[J]. Front Med, 2012, 6(4): 421-427.
[2] LU Yi, QU Bo, LIU Chang, YU Liang, Liu Xuemin, WANG Haohua, JIANG An, ZHANG Xiaogang. Mechanism of hepatocellular damage in rat caused by low serum selenium[J]. Front. Med., 2008, 2(3): 255-258.
[3] WANG Lin, LIU Yalan, XU Jianbo, TIAN Yuan, WU Heshui. Protective effect of N-acetylcysteine against lipopolysaccharide injury in hepatocytes of neonatal mice[J]. Front. Med., 2008, 2(2): 182-185.
[4] OUYANG Shan, ZHANG Qinghua, QIAO Fuyuan. Relationship between expression of hepatocyte grow factor and apoptosis of trophoblasts in hypertensive disorder complicating pregnancy[J]. Front. Med., 2007, 1(4): 386-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed