Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (1) : 33-39    https://doi.org/10.1007/s11684-011-0114-1
REVIEW
Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms
Li LI, Jianxin JIANG()
State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
 Download: PDF(157 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.

Keywords mesenchymal stem cells      migration      molecular mechanisms      signaling pathway     
Corresponding Author(s): JIANG Jianxin,Email:hellojjx@126.com   
Issue Date: 05 March 2011
 Cite this article:   
Li LI,Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0114-1
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I1/33
Fig.1  Regulatory factors of migration of mesenchymal stem cells. External signals, including chemokines and endogenous electric fields, are transduced through membrane receptors to downstream signaling pathways to regulate migration of mesenchymal stem cells.
1 Friedenstein A J, Chailakhyan R K, Latsinik N V, Panasyuk A F, Keiliss-Borok I V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation , 1974, 17(4): 331–340
doi: 10.1097/00007890-197404000-00001 pmid:4150881
2 Ortiz L A, Dutreil M, Fattman C, Pandey A C, Torres G, Go K, Phinney D G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA , 2007, 104(26): 11002–11007
doi: 10.1073/pnas.0704421104 pmid:17569781
3 Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, Kodama M, Ishibashi-Ueda H, Kangawa K, Kitamura S, Nagaya N. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol , 2007, 42(1): 88–97
doi: 10.1016/j.yjmcc.2006.10.003 pmid:17101147
4 Shake J G, Gruber P J, Baumgartner W A, Senechal G, Meyers J, Redmond J M, Pittenger M F, Martin B J. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg . 2002; 73(6): 1919–1926
5 Zohlnh?fer D, Dibra A, Koppara T, de Waha A, Ripa R S, Kastrup J, Valgimigli M, Sch?mig A, Kastrati A. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol , 2008, 51(15): 1429–1437
doi: 10.1016/j.jacc.2007.11.073 pmid:18402895
6 Patschan D, Plotkin M, Goligorsky M S. Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ?a ira. Curr Opin Pharmacol , 2006, 6(2): 176–183
doi: 10.1016/j.coph.2005.10.013 pmid:16487748
7 Liang L, Ma T, Chen W, Hu J, Bai X, Li J, Liang T. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res , 2009, 39(8): 822–832
doi: 10.1111/j.1872-034X.2009.00506.x pmid:19473439
8 Németh K, Leelahavanichkul A, Yuen P S, Mayer B, Parmelee A, Doi K, Robey P G, Leelahavanichkul K, Koller B H, Brown J M, Hu X, Jelinek I, Star R A, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med , 2009, 15(1): 42–49
doi: 10.1038/nm.1905 pmid:19098906
9 Chapel A, Bertho J M, Bensidhoum M, Fouillard L, Young R G, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin N C, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med , 2003, 5(12): 1028–1038
doi: 10.1002/jgm.452 pmid:14661178
10 Ortiz L A, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney D G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA , 2003, 100(14): 8407–8411
doi: 10.1073/pnas.1432929100 pmid:12815096
11 Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis , 2004, 63 (Suppl 2): ii84–ii89
doi: 10.1136/ard.2004.028316 pmid:15479880
12 Li Y, Yu X, Lin S, Li X, Zhang S, Song Y H. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun , 2007, 356(3): 780–784
doi: 10.1016/j.bbrc.2007.03.049 pmid:17382293
13 Ji J F, He B P, Dheen S T, Tay S S. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells , 2004, 22(3): 415–427
doi: 10.1634/stemcells.22-3-415 pmid:15153618
14 Ryu C H, Park S A, Kim S M, Lim J Y, Jeong C H, Jun J A, Oh J H, Park S H, Oh W I, Jeun S S. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun , 2010, 398(1): 105–110
doi: 10.1016/j.bbrc.2010.06.043 pmid:20558135
15 Wynn R F, Hart C A, Corradi-Perini C, O’Neill L, Evans C A, Wraith J E, Fairbairn L J, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood , 2004, 104(9): 2643–2645
doi: 10.1182/blood-2004-02-0526 pmid:15251986
16 Son B R, Marquez-Curtis L A, Kucia M, Wysoczynski M, Turner A R, Ratajczak J, Ratajczak M Z, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells , 2006, 24(5): 1254–1264
doi: 10.1634/stemcells.2005-0271 pmid:16410389
17 Tsai L K, Leng Y, Wang Z, Leeds P, Chuang D M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology , 2010, 35(11): 2225–2237
doi: 10.1038/npp.2010.97 pmid:20613717
18 Ip J E, Wu Y, Huang J, Zhang L, Pratt R E, Dzau V J. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell , 2007, 18(8): 2873–2882
doi: 10.1091/mbc.E07-02-0166 pmid:17507648
19 Sordi V, Malosio M L, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B E, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood , 2005, 106(2): 419–427
doi: 10.1182/blood-2004-09-3507 pmid:15784733
20 Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells , 2007, 25(11): 2896–2902
doi: 10.1634/stemcells.2007-0637 pmid:17901396
21 Rüster B, G?ttig S, Ludwig R J, Bistrian R, Müller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood , 2006, 108(12): 3938–3944
doi: 10.1182/blood-2006-05-025098 pmid:16896152
22 Sackstein R, Merzaban J S, Cain D W, Dagia N M, Spencer J A, Lin C P, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med , 2008, 14(2): 181–187
doi: 10.1038/nm1703 pmid:18193058
23 Jeon E S, Song H Y, Kim M R, Moon H J, Bae Y C, Jung J S, Kim J H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res , 2006, 47(3): 653–664
doi: 10.1194/jlr.M500508-JLR200 pmid:16339111
24 Song H Y, Lee M J, Kim M Y, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta , 2010, 1801(1): 23–30
pmid:19733258
26 Jaganathan B G, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells , 2007, 25(8): 1966–1974
doi: 10.1634/stemcells.2007-0167 pmid:17510214
27 Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen , 2009, 17(2): 185–191
doi: 10.1111/j.1524-475X.2009.00454.x pmid:19320886
28 Hemeda H, Jakob M, Ludwig A K, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev , 2010, 19(5): 693–706
doi: 10.1089/scd.2009.0365 pmid:20067407
29 Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S. Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem , 2010, 111(2): 469–475
doi: 10.1002/jcb.22729 pmid:20533298
30 Fischer-Valuck B W, Barrilleaux B L, Phinney D G, Russell K C, Prockop D J, O’Connor K C. Migratory response of mesenchymal stem cells to macrophage migration inhibitory factor and its antagonist as a function of colony-forming efficiency. Biotechnol Lett , 2010, 32(1): 19–27
doi: 10.1007/s10529-009-0110-6 pmid:19705068
31 Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev , 2008, 17(4): 805–813
doi: 10.1089/scd.2007.0276 pmid:18715162
32 Wang L, Li Y, Chen X, Chen J, Gautam S C, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology , 2002, 7(2): 113–117
doi: 10.1080/10245330290028588 pmid:12186702
33 Wang L, Li Y, Chen J, Gautam S C, Zhang Z, Lu M, Chopp M. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol , 2002, 30(7): 831–836
doi: 10.1016/S0301-472X(02)00829-9 pmid:12135683
34 Dwyer R M, Potter-Beirne S M, Harrington K A, Lowery A J, Hennessy E, Murphy J M, Barry F P, O’Brien T, Kerin M J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res , 2007, 13(17): 5020–5027
doi: 10.1158/1078-0432.CCR-07-0731 pmid:17785552
35 Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep , 2010, 23(6): 1561–1567
doi: 10.3892/or_00000796 pmid:20428810
36 Picinich S C, Glod J W, Banerjee D. Protein kinase C zeta regulates interleukin-8-mediated stromal-derived factor-1 expression and migration of human mesenchymal stromal cells. Exp Cell Res , 2010, 316(4): 593–602
doi: 10.1016/j.yexcr.2009.11.011 pmid:19944094
37 Ponte A L, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells , 2007, 25(7): 1737–1745
doi: 10.1634/stemcells.2007-0054 pmid:17395768
38 Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini P M, Prat M, Di Nardo P. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells , 2006, 24(1): 23–33
doi: 10.1634/stemcells.2004-0176 pmid:16100005
39 Fiedler J, R?derer G, Günther K P, Brenner R E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem , 2002, 87(3): 305–312 12397612
doi: 10.1002/jcb.10309
40 Fiedler J, Brill C, Blum W F, Brenner R E. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun , 2006, 345(3): 1177–1183
doi: 10.1016/j.bbrc.2006.05.034 pmid:16716263
41 Tamama K, Fan V H, Griffith L G, Blair H C, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells , 2006, 24(3): 686–695
doi: 10.1634/stemcells.2005-0176 pmid:16150920
42 Kollet O, Shivtiel S, Chen Y Q, Suriawinata J, Thung S N, Dabeva M D, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz D A, Lapidot T. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest , 2003, 112(2): 160–169
pmid:12865405
43 Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, Houghton P, Janowska-Wieczorek A, Ratajczak M Z. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res , 2003, 63(22): 7926–7935
pmid:14633723
44 Demetri G D, Griffin J D. Granulocyte colony-stimulating factor and its receptor. Blood , 1991, 78(11): 2791–2808
pmid:1720034
45 Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res , 2006, 1098(1): 161–169
doi: 10.1016/j.brainres.2006.02.140 pmid:16814750
46 Shyu W C, Lin S Z, Yang H I, Tzeng Y S, Pang C Y, Yen P S, Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation , 2004, 110(13): 1847–1854
doi: 10.1161/01.CIR.0000142616.07367.66 pmid:15381647
47 Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA , 2001, 98(18): 10344–10349
doi: 10.1073/pnas.181177898 pmid:11504914
48 Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, Kamachi S. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood , 1989, 73(1): 117–122
pmid:2462934
49 Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature , 2006, 442(7101): 457–460
doi: 10.1038/nature04925 pmid:16871217
50 Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol , 2009, 20(6): 674–682
doi: 10.1016/j.semcdb.2008.12.009 pmid:19146969
51 Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol , 2003, 58: 1–26
doi: 10.1016/S0070-2153(03)58001-2 pmid:14711011
52 Reid B, Song B, McCaig C D, Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J , 2005, 19(3): 379–386
doi: 10.1096/fj.04-2325com pmid:15746181
53 Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA , 2002, 99(21): 13577–13582
doi: 10.1073/pnas.202235299 pmid:12368473
54 Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun , 2010, 397(1): 12–17
doi: 10.1016/j.bbrc.2010.05.003 pmid:20452327
55 Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry , 2006, 69(2): 133–141
doi: 10.1016/j.bioelechem.2005.11.007 pmid:16473050
56 Tandon N, Goh B, Marsano A, Chao PH, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc . 2009; 2009: 6517–6521 .
58 Zha Y H, He J F, Mei Y W, Yin T, Mao L. Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int , 2007, 31(10): 1089–1096
doi: 10.1016/j.cellbi.2007.03.023 pmid:17512761
59 Schmidt A, Ladage D, Schink?the T, Klausmann U, Ulrichs C, Klinz F J, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger R H, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells , 2006, 24(7): 1750–1758
doi: 10.1634/stemcells.2005-0191 pmid:16822883
60 Zhao M, Agius-Fernandez A, Forrester J V, McCaig C D. Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci , 1996, 37(13): 2548–2558
pmid:8977469
61 Farboud B, Nuccitelli R, Schwab I R, Isseroff R R. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp Eye Res , 2000, 70(5): 667–673
doi: 10.1006/exer.2000.0830 pmid:10870525
62 Wang E, Zhao M, Forrester J V, MCCaig C D. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp Eye Res , 2000, 71(1): 91–98
doi: 10.1006/exer.2000.0858 pmid:10880279
63 Pu J, McCaig C D, Cao L, Zhao Z, Segall J E, Zhao M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci , 2007, 120(Pt 19): 3395–3403
doi: 10.1242/jcs.002774 pmid:17881501
64 Yun D H, Song H Y, Lee M J, Kim M R, Kim M Y, Lee J S, Kim J H. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med , 2009, 41(1): 17–24
doi: 10.3858/emm.2009.41.1.003 pmid:19287196
65 Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int , 2009, 33(3): 411–418
doi: 10.1016/j.cellbi.2009.01.012 pmid:19356708
66 Kang Y J, Jeon E S, Song H Y, Woo J S, Jung J S, Kim Y K, Kim J H. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem , 2005, 95(6): 1135–1145
doi: 10.1002/jcb.20499 pmid:15962287
67 Gu Y, Filippi M D, Cancelas J A, Siefring J E, Williams E P, Jasti A C, Harris C E, Lee A W, Prabhakar R, Atkinson S J, Kwiatkowski D J, Williams D A. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science , 2003, 302(5644): 445–449
doi: 10.1126/science.1088485 pmid:14564009
68 Lee M J, Jeon E S, Lee J S, Cho M, Suh D S, Chang C L, Kim J H. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem , 2008, 104(2): 499–510
doi: 10.1002/jcb.21641 pmid:18027882
69 Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell , 2005, 97(3): 185–196
doi: 10.1042/BC20040094 pmid:15715524
70 Qiang Y W, Walsh K, Yao L, Kedei N, Blumberg P M, Rubin J S, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood , 2005, 106(5): 1786–1793
doi: 10.1182/blood-2005-01-0049 pmid:15886323
71 Shang Y C, Wang S H, Xiong F, Zhao C P, Peng F N, Feng S W, Li M S, Li Y, Zhang C. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin , 2007, 28(11): 1761–1774
doi: 10.1111/j.1745-7254.2007.00671.x pmid:17959027
72 Karp J M, Leng Teo G S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell , 2009, 4(3): 206–216
doi: 10.1016/j.stem.2009.02.001 pmid:19265660
73 Barrilleaux B L, Fischer-Valuck B W, Gilliam J K, Phinney D G, O’Connor K C. Activation of CD74 inhibits migration of human mesenchymal stem cells.In Vitro Cell Dev Biol Anim , 2010, 46(6): 566–572
doi: 10.1007/s11626-010-9279-1 pmid:20198449
74 De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica , 2007, 92(4): 440–449
doi: 10.3324/haematol.10475 pmid:17488654
75 Rombouts W J, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia , 2003, 17(1): 160–170
doi: 10.1038/sj.leu.2402763 pmid:12529674
[1] Hongli Yin,Tianyi Liu,Ying Zhang,Baofeng Yang. Caveolin proteins: a molecular insight into disease[J]. Front. Med., 2016, 10(4): 397-404.
[2] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[3] Muhammad Waqas,Shasha Zhang,Zuhong He,Mingliang Tang,Renjie Chai. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea[J]. Front. Med., 2016, 10(3): 237-249.
[4] Feng Gu,Yongjie Ma,Jiao Zhang,Fengxia Qin,Li Fu. Function of Slit/Robo signaling in breast cancer[J]. Front. Med., 2015, 9(4): 431-436.
[5] Yinyin Xie,Yuanliang Zhang,Lu Jiang,Mengmeng Zhang,Zhiwei Chen,Dan Liu,Qiuhua Huang. Disabled homolog 2 is required for migration and invasion of prostate cancer cells[J]. Front. Med., 2015, 9(3): 312-321.
[6] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[7] Runlin Shi,Haibing Xiao,Tao Yang,Lei Chang,Yuanfeng Tian,Bolin Wu,Hua Xu. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism[J]. Front. Med., 2014, 8(4): 456-463.
[8] Siming Yang, Kui Ma, Changjiang Feng, Yan Wu, Yao Wang, Sha Huang, Xiaobing Fu. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: a preclinical study[J]. Front Med, 2013, 7(3): 345-353.
[9] Siming Yang, Sha Huang, Changjiang Feng, Xiaobing Fu. Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration[J]. Front Med, 2012, 6(1): 41-47.
[10] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed