Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (3) : 288-293    https://doi.org/10.1007/s11684-011-0127-9
RESEARCH ARTICLE
Type 2 diabetic patients with non-alcoholic fatty liver disease exhibit significant haemorheological abnormalities
Hui Dong1, Fu’er Lu1, Nan Wang2(), Xin Zou1, Jingjing Rao2
1. Institute of Integrative Traditional and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2. Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(118 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Haemorheological abnormalities have been described in diabetes mellitus, as well as in non-alcoholic fatty liver disease (NAFLD). However, the relationship between the changes in liver fat content and haemorheology is unknown. The current study aims to show the correlation between haemorheological parameters and intrahepatic lipid content (IHLC) in patients with type 2 diabetes. The serum biochemical markers, such as fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), liver enzymes, lipid profiles, and haemorheological properties, were examined. IHLC was quantified using proton magnetic resonance spectroscopy (1H-MRS) scanning of the liver. A significant correlation was observed between IHLC and whole blood viscosity at high, middle, and low shear rates. IHLC also positively correlated with haematocrit, the reduced whole blood viscosity at low and middle shear rates, and the erythrocyte aggregation index. Diabetic patients with NAFLD exhibited significant haemorheological abnormalities compared with patients without NAFLD. In summary, haemorheological disorders are linked to non-alcoholic fatty liver in type 2 diabetes.

Keywords diabetes mellitus, type 2      haemorheology      non-alcoholic fatty liver disease     
Corresponding Author(s): Wang Nan,Email:southern1@sohu.com   
Issue Date: 05 September 2011
 Cite this article:   
Hui Dong,Fu’er Lu,Nan Wang, et al. Type 2 diabetic patients with non-alcoholic fatty liver disease exhibit significant haemorheological abnormalities[J]. Front Med, 2011, 5(3): 288-293.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0127-9
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I3/288
VariablesSubjectsNormal reference ranges
BMI (kg/m2)24.6±3.218.5-24
Waist (cm)Women 83.1±7.7Women<80
Men 90.6±7.5Men<90
ALT (U/L)25 (18, 33)0-41
FPG (mmol/L)7.97±2.103.90-6.40
HbA1C (%)7.62±1.504.5-6.3
TC (mmol/L)4.98±0.992.90-5.20
TG (mmol/L)1.31 (1.04, 2.04)<1.7
LDL-C (mmol/L)2.93±0.820.00-3.12
Blood viscosity (mPa/s)
Low shear rate7.38±1.405.20-8.20
Middle shear rate4.83±0.603.80-5.10
High shear rate4.18±0.523.30-4.50
Plasma viscosity (mPa/s)1.37±0.071.20-1.45
ESR (mm/h)9 (5, 20)0-20
Blood reduced viscosity (mPa/s)
Low shear rate14.80±2.449.30-16.30
Middle shear rate8.55±0.966.00-9.10
High shear rate6.92±0.815.10-7.70
K-value of ESR27.90 (17.90, 53.77)0.00-120.00
RBC rheology
Aggregation index1.75±0.171.40-1.90
Rigidity index5.05±0.583.80-5.80
Deformation index0.89±0.050.78-0.92
Electrophoresis index4.37±0.503.50-4.60
IHLC (%)3.64 (0.82, 10.08)<5.60
Tab.1  Characteristics of the subjects
Fig.1  The relationships between intrahepatic lipid content (log scale) and (A) whole blood viscosity at low shear rate ( = 0.387, = 0.004); (B) whole blood viscosity at middle shear rate ( = 0.390, = 0.003); (C) whole blood viscosity at high shear rate ( = 0.336, = 0.012); (D) whole blood reduced viscosity at low shear rate ( = 0.334, = 0.013); (E) RBC aggregation index ( = 0.317, = 0.018) in type 2 diabetic patients.
VariablesWithout NAFLDWith NAFLD
N3124
Age (y)55.2±8.153.8±10.6
BMI (Kg/m2)23.6±2.825.8±3.2*
Waist (cm)82.4±8.788.4±6.3**
ALT (U/L)21 (16, 28)30 (25, 38)**
FPG (mmol/L)7.94±2.318.02±1.86
HbA1C (%)7.54±1.567.72±1.46
TC (mmol/L)4.72±0.955.33±0.96*
TG (mmol/L)1.15 (0.91, 1.43)2.17 (1.38, 3.32)**
LDL-C (mmol/L)2.81±0.753.10±0.89
Blood viscosity (mPa/s)
Low shear rate6.86±1.228.05±1.34**
Middle shear rate4.69±0.485.11±0.63**
High shear rate4.02±0.444.39±0.55**
Plasma viscosity (mPa/s)1.36±0.071.39±0.07
HCT (%)39.29±4.1141.54±3.27*
ESR (mm/h)12 (4, 20)9 (5, 17)
Blood reduced viscosity (mPa/s)
Low shear rate13.90±2.1115.97±2.39**
Middle shear rate8.2±0.798.90±1.06*
High shear rate6.75±0.657.15±0.96
K-value of ESR41.26 (15.78, 56.47)26.17 (18.61, 47.43)
RBC rheology
Aggregation index1.69±0.191.82±0.13**
Rigidity index4.97±0.535.15±0.65
Deformation index0.89±0.050.88±0.05
Electrophoresis index4.35±0.564.39±0.42
IHLC (%)0.99 (0.40, 2.72)11.90 (7.24, 18.91)**
Tab.2  Comparison of characteristics between diabetic patients with and without NAFLD
1 Angulo P, Lindor KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2002; 17(Suppl): S186-S190
doi: 10.1046/j.1440-1746.17.s1.10.x pmid:12000605
2 Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C, Arcaro G. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 2007; 30(5): 1212-1218
doi: 10.2337/dc06-2247 pmid:17277038
3 Le Dévéhat C, Vimeux M, Khodabandehlou T. Blood rheology in patients with diabetes mellitus. Clin Hemorheol Microcirc 2004; 30(3-4): 297-300
pmid:15258357
4 Ijaz S, Yang W, Winslet MC, Seifalian AM. Impairment of hepatic microcirculation in fatty liver. Microcirculation 2003; 10(6): 447-456
pmid:14745457
5 Sato N, Eguchi H, Inoue A, Matsumura T, Kawano S, Kamada T. Hepatic microcirculation in Zucker fatty rats. Adv Exp Med Biol 1986; 200: 477-483
pmid:3799339
6 Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J. Prevalence of diabetes among men and women in China. N Engl J Med 2010; 362(12): 1090-1101
doi: 10.1056/NEJMoa0908292 pmid:20335585
7 Seifalian AM, Chidambaram V, Rolles K, Davidson BR. In vivo demonstration of impaired microcirculation in steatotic human liver grafts. Liver Transpl Surg 1998; 4(1): 71-77
doi: 10.1002/lt.500040110 pmid:9457970
8 Wang N, Dong H, Wei S, Lu F. Application of proton magnetic resonance spectroscopy and computerized tomography in the diagnosis and treatment of nonalcoholic fatty liver disease. J Huazhong Univ Sci Technolog Med Sci 2008; 28(3): 295-298
doi: 10.1007/s11596-008-0315-2 pmid:18563327
9 Dagnelie PC, Leij-Halfwerk S. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer. World J Gastroenterol 2010; 16(13): 1577-1586
doi: 10.3748/wjg.v16.i13.1577 pmid:20355236
10 Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462-E468
doi: 10.1152/ajpendo.00064.2004 pmid:15339742
11 Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin North Am 2010; 39(1): 1-7
doi: 10.1016/j.gtc.2009.12.014 pmid:20202574
12 Seifalian AM, Piasecki C, Agarwal A, Davidson BR. The effect of graded steatosis on flow in the hepatic parenchymal microcirculation. Transplantation 1999; 68(6): 780-784
doi: 10.1097/00007890-199909270-00009 pmid:10515377
13 Longo R, Pollesello P, Ricci C, Masutti F, Kvam BJ, Bercich L, Crocè LS, Grigolato P, Paoletti S, de Bernard B, Tiribelli C, Dalla Palma L. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995; 5(3): 281-285
doi: 10.1002/jmri.1880050311 pmid:7633104
14 Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, McGarry JD, Stein DT. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol 1999; 276(5 Pt 1): E977-E989
pmid:10329993
15 Westerbacka J, Cornér A, Tiikkainen M, Tamminen M, Vehkavaara S, H?kkinen AM, Fredriksson J, Yki-J?rvinen H. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia 2004; 47(8): 1360-1369 15309287
doi: 10.1007/s00125-004-1460-1
16 Schick F, Eismann B, Jung WI, Bongers H, Bunse M, Lutz O. Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn Reson Med 1993; 29(2): 158-167
doi: 10.1002/mrm.1910290203 pmid:8429779
17 Dong H, Lu FE, Wang N, Xu LJ, Zou X, Rao JJ. Factors related with hepatic triglyceride contents in patients with type 2 diabetes: a magnetic resonance spectroscopy study. J Huazhong Univ Sci Technol Med Sci 2010; 39(1): 64-68
18 Sam S, Haffner S, Davidson MH, D’Agostino RB Sr, Feinstein S, Kondos G, Perez A, Mazzone T. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes 2008; 57(8): 2022-2027
doi: 10.2337/db08-0157 pmid:18469202
19 Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken) 2008; 291(6): 684-692
doi: 10.1002/ar.20715 pmid:18484615
20 Negrean V, Suciu I, Sampelean D, Cozma A. Rheological changes in diabetic microangiopathy. Rom J Intern Med 2004; 42(2): 407-413
pmid:15529630
21 Martins e Silva J, Saldanha C. Cardiovascular risk factors: hemorheologic and hemostatic components. Rev Port Cardiol 2007; 26(2): 161-182
pmid:17479711
[1] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed