Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    0, Vol. Issue () : 134-155    https://doi.org/10.1007/s11684-012-0188-4
REVIEW
MicroRNAs and lung cancers: from pathogenesis to clinical implications
Ji Qi1,2, David Mu1,2,3()
1. Department of Pathology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA; 2. Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA; 3. Penn State Cancer Institute, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
 Download: PDF(0 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lung cancer is the leading cause of cancer-related deaths in the US and worldwide. Better understanding of the disease is warranted for improvement in clinical management. Here we summarize the functions of small-RNA-based, posttranscriptional gene regulators, i.e. microRNAs, in the pathogenesis of lung cancers. We discuss the microRNAs that play oncogenic as well as tumor suppressive roles. We also touch on the value of microRNAs as markers for diagnosis, prognosis and the promising field of microRNA-based novel therapies for lung cancers.

Keywords lung biology      lung cancer      microRNA     
Corresponding Author(s): Mu David,Email:dmu234@gmail.com   
Issue Date: 05 June 2012
 Cite this article:   
Ji Qi,David Mu. MicroRNAs and lung cancers: from pathogenesis to clinical implications[J]. Front Med, 0, (): 134-155.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0188-4
https://academic.hep.com.cn/fmd/EN/Y0/V/I/134
DrugMiRNAs affecting response to drugSensitivity change when miRNA expressedReferences
TRAILmiR-212,miR-130aIncrease[57, 149]
miR-221/222Decrease[52]
CisplatinmiR-181a, miR-181bIncrease[100, 271-276]
miR-497, miR-451,
miR-138, miR-200c
miR-150
miR-134/379/495
miR-630, miR-106Decrease[67, 272]
DoxorubicinmiR-1
miR-134/379/495Increase[132, 273]
DocetaxelmiR-200b,miR-100Increase[277, 278]
CetuximabmiR-200cIncrease[100]
EtoposidemiR-134/379/495Increase[273]
MEK inhibitor
AZD6244miR-17Decrease[279]
EGFR-TKI
AG1478miR-21Decrease[36]
VincristinmiR-181b, miR-497Increase[275, 276]
DMCmiR-106, miR-150Decrease[67]
GefitinibmiR-221/222, miR-30b/cDecrease[58]
miR-21, miR-29a/c
miR-100
miR-103, miR-203Increase[58]
Tab.1  MicroRNAs experimentally validated to alter chemosensitivity of lung cancers
Fig.1  MiRNAs involved in the “Yin” or “Yang” side of lung cancer pathogenesis. “Dual role” indicates those miRNAs that exhibit either pro- or anti-oncogenic activity depending on the biologic context.
1 Cancer Facts and Figures 2011. American Cancer Society ; Available from: http://www.cancer.org (Access on December 23, 2011)
2 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90
doi: 10.3322/caac.20107 pmid:21296855
3 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–297
doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
4 Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell 2007; 28(2): 328–336
doi: 10.1016/j.molcel.2007.09.028 pmid:17964270
5 Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007; 26(5): 611–623
doi: 10.1016/j.molcel.2007.05.001 pmid:17560368
6 Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110(5): 563–574
doi: 10.1016/S0092-8674(02)00908-X pmid:12230974
7 Meister J, Schmidt MH. miR-126 and miR-126*: new players in cancer. Sci World J 2010; 10: 2099–2100
doi: 10.1100/tsw.2010.198 pmid:20953557
8 Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008; 455(7216): 1124–1128
doi: 10.1038/nature07299 pmid:18806776
9 ?rom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5' UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30(4): 460–471
doi: 10.1016/j.molcel.2008.05.001
pmid:18498749
10 Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 2011 Nov 9 . [Epub ahead of print]
doi: 10.1002/wrna.121
11 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843–854
doi: 10.1016/0092-8674(93)90529-Y pmid:8252621
12 Sozzi G, Pastorino U, Croce CM. MicroRNAs and lung cancer: from markers to targets. Cell Cycle 2011; 10(13): 2045–2046
doi: 10.4161/cc.10.13.15712 pmid:21623159
13 Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524–15529
doi: 10.1073/pnas.242606799 pmid:12434020
14 Olive V, Jiang I, He L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 2010; 42(8): 1348–1354
doi: 10.1016/j.biocel.2010.03.004 pmid:20227518
15 Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol 2004; 339(2): 327–335
doi: 10.1016/j.jmb.2004.03.065 pmid:15136036
16 He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 2005; 435(7043): 828–833
doi: 10.1038/nature03552 pmid:15944707
17 Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011; 25(16): 1734–1745
doi: 10.1101/gad.17027411 pmid:21816922
18 Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 2010; 29(23): 3411–3422
doi: 10.1038/onc.2010.83 pmid:20305691
19 Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65(21): 9628–9632
doi: 10.1158/0008-5472.CAN-05-2352 pmid:16266980
20 Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA, Park YY, Lee JS, Safe S. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene 2011Jul18. [Epub ahead of print]
doi: 10.1038/onc.2011.296
doi: 10.1038/onc.2011.296 pmid:21765466
21 Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther 2010; 10(8): 748–757
doi: 10.4161/cbt.10.8.13083 pmid:20703102
22 Zhao HY, Ooyama A, Yamamoto M, Ikeda R, Haraguchi M, Tabata S, Furukawa T, Che XF, Iwashita K, Oka T, Fukushima M, Nakagawa M, Ono M, Kuwano M, Akiyama S. Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells. Cancer Lett 2008; 270(1): 156–163
doi: 10.1016/j.canlet.2008.04.045 pmid:18583030
23 Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, Osada H, Takahashi T. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 2007; 26(41): 6099–6105
doi: 10.1038/sj.onc.1210425 pmid:17384677
24 Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103(7): 2257–2261
doi: 10.1073/pnas.0510565103 pmid:16461460
25 Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007; 282(4): 2135–2143
doi: 10.1074/jbc.M608939200 pmid:17135249
26 O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435(7043): 839–843
doi: 10.1038/nature03677 pmid:15944709
27 Takahashi T, Obata Y, Sekido Y, Hida T, Ueda R, Watanabe H, Ariyoshi Y, Sugiura T, Takahashi T. Expression and amplification of myc gene family in small cell lung cancer and its relation to biological characteristics. Cancer Res 1989; 49(10): 2683–2688
pmid:2540905
28 Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 2008; 68(14): 5540–5545
doi: 10.1158/0008-5472.CAN-07-6460 pmid:18632605
29 Ebi H, Sato T, Sugito N, Hosono Y, Yatabe Y, Matsuyama Y, Yamaguchi T, Osada H, Suzuki M, Takahashi T. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009; 28(38): 3371–3379
doi: 10.1038/onc.2009.201 pmid:19597473
30 Kanzaki H, Ito S, Hanafusa H, Jitsumori Y, Tamaru S, Shimizu K, Ouchida M. Identification of direct targets for the miR-17-92 cluster by proteomic analysis. Proteomics 2011; 11(17): 3531–3539
doi: 10.1002/pmic.201000501 pmid:21751348
31 Gou D, Mishra A, Weng T, Su L, Chintagari NR, Wang Z, Zhang H, Gao L, Wang P, Stricker HM, Liu L. Annexin A2 interactions with Rab14 in alveolar type II cells. J Biol Chem 2008; 283(19): 13156–13164
doi: 10.1074/jbc.M801532200 pmid:18332131
32 Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38(9): 1060–1065
doi: 10.1038/ng1855 pmid:16878133
33 Liu M, Wang Z, Yang S, Zhang W, He S, Hu C, Zhu H, Quan L, Bai J, Xu N. TNF-α is a novel target of miR-19a. Int J Oncol 2011; 38(4): 1013–1022
pmid:21271217
34 Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9(4): 405–414
doi: 10.1038/ni1575 pmid:18327259
35 Fei J, Lan F, Guo M, Li Y, Liu Y. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target 2008; 16(9): 688–693
doi: 10.1080/10611860802295946 pmid:18982517
36 Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, Croce CM, Harris CC. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA 2009; 106(29): 12085–12090
doi: 10.1073/pnas.0905234106 pmid:19597153
37 Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 2010; 411(11-12): 846–852
doi: 10.1016/j.cca.2010.02.074 pmid:20223231
38 Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010; 18(3): 282–293
doi: 10.1016/j.ccr.2010.08.013 pmid:20832755
39 Frezzetti D, De Menna M, Zoppoli P, Guerra C, Ferraro A, Bello AM, De Luca P, Calabrese C, Fusco A, Ceccarelli M, Zollo M, Barbacid M, Di Lauro R, De Vita G. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene 2011; 30(3): 275–286
doi: 10.1038/onc.2010.416 pmid:20956945
40 Wang K, Li PF. Foxo3a regulates apoptosis by negatively targeting miR-21. J Biol Chem 2010; 285(22): 16958–16966
doi: 10.1074/jbc.M109.093005 pmid:20371612
41 L?ffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 2007; 110(4): 1330–1333
doi: 10.1182/blood-2007-03-081133 pmid:17496199
42 Yang CH, Yue J, Fan M, Pfeffer LM. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res 2010; 70(20): 8108–8116
doi: 10.1158/0008-5472.CAN-10-2579 pmid:20813833
43 Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A, Horiuchi D, Lebbink RJ, Mo YY, Goga A, McManus MT. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 2009; 284(27): 18515–18524
doi: 10.1074/jbc.M109.006676 pmid:19419954
44 Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 2008; 378(3): 492–504
doi: 10.1016/j.jmb.2008.03.015 pmid:18384814
45 Li C, Nguyen HT, Zhuang Y, Lin Y, Flemington EK, Guo W, Guenther J, Burow ME, Morris GF, Sullivan D, Shan B. Post-transcriptional up-regulation of miR-21 by type I collagen. Mol Carcinog 2011; 50(7): 563–570
doi: 10.1002/mc.20742 pmid:21647970
46 Kim YJ, Park SJ, Choi EY, Kim S, Kwak HJ, Yoo BC, Yoo H, Lee SH, Kim D, Park JB, Kim JH. PTEN modulates miR-21 processing via RNA-regulatory protein RNH1. PLoS ONE 2011; 6(12): e28308
doi: 10.1371/journal.pone.0028308 pmid:22162762
47 Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454(7200): 56–61
doi: 10.1038/nature07086 pmid:18548003
48 Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18(3): 350–359
doi: 10.1038/cr.2008.24 pmid:18270520
49 Schaefer U, Voloshanenko O, Willen D, Walczak H. TRAIL: a multifunctional cytokine. Front Biosci 2007; 12(8-12): 3813–3824
doi: 10.2741/2354 pmid:17485341
50 Koschny R, Walczak H, Ganten TM. The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 2007; 85(9): 923–935
doi: 10.1007/s00109-007-0194-1 pmid:17437073
51 Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM, Condorelli G. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 2008; 27(27): 3845–3855
doi: 10.1038/onc.2008.6 pmid:18246122
52 Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009; 16(6): 498–509
doi: 10.1016/j.ccr.2009.10.014 pmid:19962668
53 Zhang C, Zhang J, Zhang A, Wang Y, Han L, You Y, Pu P, Kang C. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol 2010; 37(6): 1621–1626
pmid:21042732
54 Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA, Farace MG. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007; 282(32): 23716–23724
doi: 10.1074/jbc.M701805200 pmid:17569667
55 Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG, Ciafrè SA. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 2008; 3(12): e4029
doi: 10.1371/journal.pone.0004029 pmid:19107213
56 Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, Borbone E, Petrocca F, Alder H, Croce CM, Fusco A. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007; 14(3): 791–798
doi: 10.1677/ERC-07-0129 pmid:17914108
57 Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D, Bottoni A, Garofalo M, Gasparini P, Condorelli G, Chiariello M, Croce CM. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 2012; 31(5): 634–642
doi: 10.1038/onc.2011.260 pmid:21706050
58 Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G, Engelman JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew KP, Croce CM. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011; 18(1): 74–82
doi: 10.1038/nm.2577 pmid:22157681
59 Liu L, Jiang Y, Zhang H, Greenlee AR, Han Z. Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide. Life Sci 2010; 86(5-6): 192–198
doi: 10.1016/j.lfs.2009.12.002 pmid:20006626
60 Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, Zhang B, Li XD, Zhao J, Chen LP, Xing XM, Tang SF, Lin YC, Lai YD, Yang P, Zeng JL, Xiao Q, Zeng XW, Lin ZN, Zhuang ZX, Zhuang SM, Chen W. Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene 2011; 30(36): 3875–3886
doi: 10.1038/onc.2011.103 pmid:21460851
61 Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JT, Dhruv H, Foss KM, Sibenaller Z, Ryken T, Gotway MB, Kim S, Weiss GJ. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 2011; 129(11): 2621–2631
doi: 10.1002/ijc.25939 pmid:21448905
62 Cao G, Huang B, Liu Z, Zhang J, Xu H, Xia W, Li J, Li S, Chen L, Ding H, Zhao Q, Fan M, Shen B, Shao N. Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways. Biochem Biophys Res Commun 2010; 396(4): 978–982
doi: 10.1016/j.bbrc.2010.05.037 pmid:20470754
63 Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, Lerman MI, Roth JA, Minna JD. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002; 62(9): 2715–2720
pmid:11980673
64 Ivanova AV, Ivanov SV, Pascal V, Lumsden JM, Ward JM, Morris N, Tessarolo L, Anderson SK, Lerman MI. Autoimmunity, spontaneous tumourigenesis, and IL-15 insufficiency in mice with a targeted disruption of the tumour suppressor gene Fus1. J Pathol 2007; 211(5): 591–601
doi: 10.1002/path.2146 pmid:17318811
65 Prudkin L, Behrens C, Liu DD, Zhou X, Ozburn NC, Bekele BN, Minna JD, Moran C, Roth JA, Ji L, Wistuba II. Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clin Cancer Res 2008; 14(1): 41–47
doi: 10.1158/1078-0432.CCR-07-1252 pmid:18172250
66 Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, Wistuba II, Ji L, Roth JA, Minna JD, Pertsemlidis A. miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res 2009; 7(8): 1234–1243
doi: 10.1158/1541-7786.MCR-08-0507 pmid:19671678
67 Wang PY, Li YJ, Zhang S, Li ZL, Yue Z, Xie N, Xie SY. Regulating A549 cells growth by ASO inhibiting miRNA expression. Mol Cell Biochem 2010; 339(1-2): 163–171
doi: 10.1007/s11010-009-0380-2 pmid:20049626
68 Li YJ, Zhang YX, Wang PY, Chi YL, Zhang C, Ma Y, Lv CJ, Xie SY. Regression of A549 lung cancer tumors by anti-miR-150 vector. Oncol Rep 2012; 27(1): 129–134
pmid:21935578
69 Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901–906
doi: 10.1038/35002607 pmid:10706289
70 Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408(6808): 86–89
doi: 10.1038/35040556 pmid:11081512
71 Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010; 17(1): F19–F36
doi: 10.1677/ERC-09-0184 pmid:19779035
72 Büssing I, Slack FJ, Grosshans H. let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008; 14(9): 400–409
doi: 10.1016/j.molmed.2008.07.001 pmid:18674967
73 Jér?me T, Laurie P, Louis B, Pierre C. Enjoy the silence: the story of let-7 microRNA and cancer. Curr Genomics 2007; 8(4): 229–233
doi: 10.2174/138920207781386933 pmid:18645597
74 Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 2011; 102(1): 9–17
doi: 10.1111/j.1349-7006.2010.01707.x pmid:20735434
75 Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009; 8(6): 843–852
doi: 10.4161/cc.8.6.7907 pmid:19221491
76 Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18(10): 505–516
doi: 10.1016/j.tcb.2008.07.007 pmid:18774294
77 Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26(5): 745–752
doi: 10.1016/j.molcel.2007.05.010 pmid:17540599
78 Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26(5): 731–743
doi: 10.1016/j.molcel.2007.05.017 pmid:17540598
79 Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6(13): 1586–1593
doi: 10.4161/cc.6.13.4436 pmid:17554199
80 He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447(7148): 1130–1134
doi: 10.1038/nature05939 pmid:17554337
81 Lizé M, Klimke A, Dobbelstein M. MicroRNA-449 in cell fate determination. Cell Cycle 2011; 10(17): 2874–2882
doi: 10.4161/cc.10.17.17181 pmid:21857159
82 Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 2011; 195(3): 417–433
doi: 10.1083/jcb.201103097 pmid:22024162
83 Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011; 30(25): 2888–2899
doi: 10.1038/onc.2011.13 pmid:21317930
84 Muth M, Hussein K, Jacobi C, Kreipe H, Bock O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA — a mechanism involved in SERPINE1 (PAI-1) overexpression. J Transl Med 2011; 9(1): 24
doi: 10.1186/1479-5876-9-24 pmid:21375729
85 Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17(15): 1298–1307
doi: 10.1016/j.cub.2007.06.068 pmid:17656095
86 Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009; 23(3): 806–812
doi: 10.1096/fj.08-121384 pmid:18952709
87 Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P. Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2008; 29(12): 2394–2399
doi: 10.1093/carcin/bgn209 pmid:18780894
88 Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer 2011; 10(1): 55
doi: 10.1186/1476-4598-10-55 pmid:21575235
89 Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, G?tz U, Hermeking H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10(24): 4256–4271
doi: 10.4161/cc.10.24.18552 pmid:22134354
90 Lizé M, Herr C, Klimke A, Bals R, Dobbelstein M. MicroRNA-449a levels increase by several orders of magnitude during mucociliary differentiation of airway epithelia. Cell Cycle 2010; 9(22): 4579–4583
doi: 10.4161/cc.9.22.13870 pmid:21088493
91 Jeon HS, Lee SY, Lee EJ, Yun SC, Cha EJ, Choi E, Na MJ, Park JY, Kang J, Son JW. Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer 2011 Nov 10. [Epub ahead of print]
doi: 10.1016/j.lungcan.2011.10.012
pmid:22078727
92 Lizé M, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ 2010; 17(3): 452–458
doi: 10.1038/cdd.2009.188 pmid:19960022
93 Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 2010; 17(2): 215–220
doi: 10.1038/cdd.2009.69 pmid:19498445
94 Ofir M, Hacohen D, Ginsberg D. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 2011; 9(4): 440–447
doi: 10.1158/1541-7786.MCR-10-0344 pmid:21454377
95 Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L, Colarossi C, Francescangeli F, Biffoni M, Collura D, Giacobbe A, D’Urso L, Falchi M, Venneri MA, Muto G, De Maria R, Bonci D. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011; 30(41): 4231–4242
doi: 10.1038/onc.2011.140 pmid:21532615
96 Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res 2009; 69(13): 5553–5559
doi: 10.1158/0008-5472.CAN-08-4277 pmid:19549910
97 Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10(5): 593–601
doi: 10.1038/ncb1722 pmid:18376396
98 Hurteau GJ, Carlson JA, Spivack SD, Brock GJ. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67(17): 7972–7976
doi: 10.1158/0008-5472.CAN-07-1058 pmid:17804704
99 Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 2009; 23(18): 2140–2151
doi: 10.1101/gad.1820209 pmid:19759262
100 Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti GV, Papotti M, Allgayer H. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res 2010; 8(9): 1207–1216
doi: 10.1158/1541-7786.MCR-10-0052 pmid:20696752
101 Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C. Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 2011; 121(1): 110–122
doi: 10.1093/toxsci/kfr029 pmid:21292642
102 Roybal JD, Zang Y, Ahn YH, Yang Y, Gibbons DL, Baird BN, Alvarez C, Thilaganathan N, Liu DD, Saintigny P, Heymach JV, Creighton CJ, Kurie JM. miR-200 inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol Cancer Res 2011; 9(1): 25–35
doi: 10.1158/1541-7786.MCR-10-0497 pmid:21115742
103 Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, Alvarez CA, Moreira DC, Creighton CJ, Gregory PA, Goodall GJ, Kurie JM. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest 2011; 121(4): 1373–1385
doi: 10.1172/JCI42579 pmid:21403400
104 Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, Wong CH, Wang H, Ungewiss C, Ahn YH, Shin DH, Kurie JM, Hanash SM. Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 2011; 71(24): 7670–7682
doi: 10.1158/0008-5472.CAN-11-0964 pmid:21987723
105 Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17(9): 1101–1108
doi: 10.1038/nm.2401 pmid:21822286
106 Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J, Jiang B, Shu Y, Liu P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 2011 Oct 13. [Epub ahead of print]
doi: 10.1007/s00280-011-1752-3
pmid:21993663
107 Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev 2009; 23(18): 2166–2178
doi: 10.1101/gad.1842409 pmid:19720868
108 Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T. Downregulation of microRNAs-143 and-145 in B-cell malignancies. Cancer Sci 2007; 98(12): 1914–1920
doi: 10.1111/j.1349-7006.2007.00618.x pmid:17892514
109 Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009; 125(2): 345–352
doi: 10.1002/ijc.24390 pmid:19378336
110 Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065–7070
doi: 10.1158/0008-5472.CAN-05-1783 pmid:16103053
111 Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12): 882–891
pmid:14573789
112 Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, Liu J, Tabatabai ZL, Kakar S, Deng G, Tanaka Y, Dahiya R. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 2011; 32(5): 772–778
doi: 10.1093/carcin/bgr036 pmid:21349819
113 Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y. Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology 2009; 77(1): 12–21
doi: 10.1159/000218166 pmid:19439999
114 Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 2008; 3(7): e2557
doi: 10.1371/journal.pone.0002557 pmid:18596939
115 Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH, Ma Y, Fiering S, Memoli V, Li H, DiRenzo J, Korc M, Cole CN, Bak M, Kauppinen S, Dmitrovsky E. Uncovering growth-suppressive microRNAs in lung cancer. Clin Cancer Res 2009; 15(4): 1177–1183
doi: 10.1158/1078-0432.CCR-08-1355 pmid:19228723
116 Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 2009; 45(12): 2197–2206
doi: 10.1016/j.ejca.2009.04.039 pmid:19493678
117 Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 2011; 8(1): 125–131
doi: 10.4161/rna.8.1.14259 pmid:21289483
118 Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, Hu J. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res 2010; 29(1): 151
doi: 10.1186/1756-9966-29-151 pmid:21092188
119 Yin R, Zhang S, Wu Y, Fan X, Jiang F, Zhang Z, Feng D, Guo X, Xu L. microRNA-145 suppresses lung adenocarcinoma-initiating cell proliferation by targeting OCT4. Oncol Rep 2011; 25(6): 1747–1754
pmid:21479367
120 Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 2010; 70(1): 378–387
doi: 10.1158/0008-5472.CAN-09-2021 pmid:19996288
121 Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F. Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 2010; 31(2): 252–258
doi: 10.1093/carcin/bgp208 pmid:19748927
122 Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 2010; 64(6): 399–408
doi: 10.1016/j.biopha.2010.01.018 pmid:20363096
123 Pekarsky Y, Croce CM. Is miR-29 an oncogene or tumor suppressor in CLL? Oncotarget 2010; 1(3): 224–227
pmid:20936047
124 Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T, Croce CM. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66(24): 11590–11593
doi: 10.1158/0008-5472.CAN-06-3613 pmid:17178851
125 Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, Volinia S, Alder H, Rassenti L, Kipps T, Croce CM, Pekarsky Y. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 2010; 107(27): 12210–12215
doi: 10.1073/pnas.1007186107 pmid:20566844
126 Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lü J. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45(2): 287–294
doi: 10.1165/rcmb.2010-0323OC pmid:20971881
127 Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104(40): 15805–15810
doi: 10.1073/pnas.0707628104 pmid:17890317
128 Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 2009; 10(4): 400–405
doi: 10.1038/embor.2009.9 pmid:19247375
129 Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007; 26(42): 6133–6140
doi: 10.1038/sj.onc.1210436 pmid:17404574
130 Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38(2): 228–233
doi: 10.1038/ng1725 pmid:16380711
131 Wang X, Ling C, Bai Y, Zhao J. MicroRNA-206 is associated with invasion and metastasis of lung cancer. Anat Rec (Hoboken) 2011; 294(1): 88–92
doi: 10.1002/ar.21287 pmid:21157919
132 Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 2008; 283(48): 33394–33405
doi: 10.1074/jbc.M804788200 pmid:18818206
133 Moriya Y, Nohata N, Kinoshita T, Mutallip M, Okamoto T, Yoshida S, Suzuki M, Yoshino I, Seki N. Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma. J Hum Genet 2012; 57(1): 38–45
doi: 10.1038/jhg.2011.126 pmid:22089643
134 Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011; 137(4): 557–566
doi: 10.1007/s00432-010-0918-4 pmid:20508945
135 Miko E, Czimmerer Z, Csánky E, Boros G, Buslig J, Dezso B, Scholtz B. Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 2009; 35(8): 646–664
doi: 10.3109/01902140902822312 pmid:19895320
136 Wang XC, Du LQ, Tian LL, Wu HL, Jiang XY, Zhang H, Li DG, Wang YY, Wu HY, She Y, Liu QF, Fan FY, Meng AM. Expression and function of miRNA in postoperative radiotherapy sensitive and resistant patients of non-small cell lung cancer. Lung Cancer 2011; 72(1): 92–99
doi: 10.1016/j.lungcan.2010.07.014 pmid:20728239
137 Yang Y, Li X, Yang Q, Wang X, Zhou Y, Jiang T, Ma Q, Wang YJ. The role of microRNA in human lung squamous cell carcinoma. Cancer Genet Cytogenet 2010; 200(2): 127–133
doi: 10.1016/j.cancergencyto.2010.03.014 pmid:20620595
138 Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66(2): 169–175
doi: 10.1016/j.lungcan.2009.01.010 pmid:19223090
139 Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA, Nuovo G, Marsh CB, Nana-Sinkam SP. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 2008; 373(4): 607–612
doi: 10.1016/j.bbrc.2008.06.090 pmid:18602365
140 Watanabe K, Emoto N, Hamano E, Sunohara M, Kawakami M, Kage H, Kitano K, Nakajima J, Goto A, Fukayama M, Nagase T, Yatomi Y, Ohishi N, Takai D. Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer 2011; n/a
doi: 10.1002/ijc.26254 pmid:21702040
141 Miko E, Margitai Z, Czimmerer Z, Várkonyi I, Dezso B, Lányi A, Bacsó Z, Scholtz B. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett 2011; 585(8): 1191–1196
doi: 10.1016/j.febslet.2011.03.039 pmid:21439283
142 Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 2010; 391(3): 1483–1489
doi: 10.1016/j.bbrc.2009.12.098 pmid:20034472
143 Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, Varella-Garcia M, Bunn PA Jr, Haney J, Helfrich BA, Kato H, Hirsch FR, Franklin WA. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 2008; 19(6): 1053–1059
doi: 10.1093/annonc/mdn006 pmid:18304967
144 Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011; 30(23): 2644–2658
doi: 10.1038/onc.2010.642 pmid:21358675
145 Zhang JG, Guo JF, Liu DL, Liu Q, Wang JJ. MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 2011; 6(4): 671–678
doi: 10.1097/JTO.0b013e318208eb35 pmid:21270667
146 Luo L, Zhang T, Liu H, Lv T, Yuan D, Yao Y, Lv Y, Song Y. MiR-101 and Mcl-1 in non-small-cell lung cancer: expression profile and clinical significance. Med Oncol 2011 Oct 13. [Epub ahead of print]
doi: 10.1007/s12032-011-0085-8
pmid:21993632
147 Wu DW, Cheng YW, Wang J, Chen CY, Lee H. Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res 2010; 70(24): 10392–10401
doi: 10.1158/0008-5472.CAN-10-2341 pmid:21159652
148 Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, Perdomo C, Kotton D, Vaziri C, Anderlind C, Spira A, Cardoso WV, Lü J. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010; 9(9): 1809–1818
doi: 10.4161/cc.9.9.11535 pmid:20404570
149 Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C, Iaboni M, Nuovo G, Croce CM, Condorelli G. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res 2010; 70(9): 3638–3646
doi: 10.1158/0008-5472.CAN-09-3341 pmid:20388802
150 Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, Yu SL, Chen JS, Chang KJ, Jee SH, Tan CT, Lin MT, Kuo ML. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 2010; 70(7): 2675–2685
doi: 10.1158/0008-5472.CAN-09-2448 pmid:20233879
151 Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94(15): 8104–8109
doi: 10.1073/pnas.94.15.8104 pmid:9223322
152 Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1α. Carcinogenesis 2011; 32(12): 1881–1889
doi: 10.1093/carcin/bgr218 pmid:21965273
153 Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila microRNA targets. PLoS Biol 2003; 1(3): E60
doi: 10.1371/journal.pbio.0000060 pmid:14691535
154 Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68(10): 3566–3572
doi: 10.1158/0008-5472.CAN-07-6639 pmid:18483236
155 Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009; 284(9): 5731–5741
doi: 10.1074/jbc.M804280200 pmid:19073608
156 Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 2011; 7(6): 805–814
doi: 10.7150/ijbs.7.805 pmid:21750649
157 Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC, Lin SY, Chen SJ, Chen HC, Yeh SD, Wu CW. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 2010; 70(21): 8822–8831
doi: 10.1158/0008-5472.CAN-10-0638 pmid:20978205
158 Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, Zhang M, Mercedes L, Hong JA, Rao M, Schrump DS. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS ONE 2010; 5(10): e13764
doi: 10.1371/journal.pone.0013764 pmid:21048943
159 Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120(4): 1298–1309
doi: 10.1172/JCI39566 pmid:20237410
160 Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA. Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev 2011; 25(6): 646–659
doi: 10.1101/gad.2004211 pmid:21406558
161 Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 2010; 70(12): 5147–5154
doi: 10.1158/0008-5472.CAN-10-0410 pmid:20530680
162 Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of microRNA miR-125a or miR-125b. J Biol Chem 2007; 282(2): 1479–1486
doi: 10.1074/jbc.M609383200 pmid:17110380
163 Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, Carlotti C Jr, Tirapelli D, Neder L, Brassesco MS, Scrideli CA, Tone LG, Georgescu MM, Zhang W, Puduvalli V, Calin GA. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer 2010; 49(11): 981–990
doi: 10.1002/gcc.20808 pmid:20665731
164 Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Mori M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 2011; 17(9): 2725–2733
doi: 10.1158/1078-0432.CCR-10-2132 pmid:21220473
165 Zhang Y, Gao JS, Tang X, Tucker LD, Quesenberry P, Rigoutsos I, Ramratnam B. MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett 2009; 583(22): 3725–3730
doi: 10.1016/j.febslet.2009.10.002 pmid:19818772
166 Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23(7): 862–876
doi: 10.1101/gad.1767609 pmid:19293287
167 Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T. Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosomes Cancer 2008; 47(9): 810–818
doi: 10.1002/gcc.20582 pmid:18523997
168 Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J. Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer 2007; 46(11): 1000–1010
doi: 10.1002/gcc.20485 pmid:17674361
169 Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 2010; 10: 318
doi: 10.1186/1471-2407-10-318 pmid:20569443
170 Lu W, Li S, Liu B, Li Y, Luo M, Sun L, You J, Zhou Q. Screening of metastasis-related microRNAs in the large-cell lung cancer cell lines with different metastastic potentials. Chin J Lung Cancer(Zhongguo Fei Ai Za Zhi ) 2011; 14(11): 835–840 (in Chinese)
pmid:22104216
171 Wang G, Mao W, Zheng S, Ye J. Epidermal growth factor receptor-regulated miR-125a-5p—a metastatic inhibitor of lung cancer. FEBS J 2009; 276(19): 5571–5578
doi: 10.1111/j.1742-4658.2009.07238.x pmid:19702827
172 Jiang L, Zhang Q, Chang J, Qiu X, Wang E. hsa-miR-125a-5p enhances invasion ability in non-small lung carcinoma cell lines. Chin J Lung Cancer(Zhongguo Fei Ai Za Zhi ) 2009; 12(9): 951–955 (in Chinese)
pmid:20719190
173 Myatt SS, Wang J, Monteiro LJ, Christian M, Ho KK, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 2010; 70(1): 367–377
doi: 10.1158/0008-5472.CAN-09-1891 pmid:20028871
174 Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Targeting of integrin beta1 and kinesin 2alpha by microRNA 183. J Biol Chem 2010; 285(8): 5461–5471
doi: 10.1074/jbc.M109.037127 pmid:19940135
175 Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X. miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 2010; 10(1): 354
doi: 10.1186/1471-2407-10-354 pmid:20602797
176 Sarver AL, Li L, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010; 70(23): 9570–9580
doi: 10.1158/0008-5472.CAN-10-2074 pmid:21118966
177 Wang G, Mao W, Zheng S. MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 2008; 582(25-26): 3663–3668
doi: 10.1016/j.febslet.2008.09.051 pmid:18840437
178 Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J, Chen J. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010; 70(14): 6015–6025
doi: 10.1158/0008-5472.CAN-09-4531 pmid:20610624
179 Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM, Gorospe M, Harris AL, Helleday T, Chowdhury D. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011; 41(2): 210–220
doi: 10.1016/j.molcel.2010.12.005 pmid:21195000
180 Sun Y, Fang R, Li C, Li L, Li F, Ye X, Chen H. Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochem Biophys Res Commun 2010; 396(2): 501–507
doi: 10.1016/j.bbrc.2010.04.127 pmid:20420807
181 Zhang L, Liu T, Huang Y, Liu J. microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. Int J Mol Med 2011; 28(3): 381–388
pmid:21503569
182 Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X, Song L. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS ONE 2010; 5(12): e15797
doi: 10.1371/journal.pone.0015797 pmid:21203424
183 Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A, Bogunovic D, Polsky D, Wei J, Lee P, Belitskaya-Levy I, Bhardwaj N, Osman I, Hernando E. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009; 106(6): 1814–819
doi: 10.1073/pnas.0808263106 pmid:19188590
184 Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009; 284(35): 23204–23216
doi: 10.1074/jbc.M109.031427 pmid:19574223
185 Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res 2011; 13(2): R24
doi: 10.1186/bcr2839 pmid:21375733
186 Lowery AJ, Miller N, Dwyer RM, Kerin MJ. Dysregulated miR-183 inhibits migration in breast cancer cells. BMC Cancer 2010; 10(1): 502
doi: 10.1186/1471-2407-10-502 pmid:20858276
187 Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138(3): 592–603
doi: 10.1016/j.cell.2009.07.011 pmid:19665978
188 Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K, Mori M. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol 2009; 34(4): 1069–1075
pmid:19287964
189 Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006; 5(1): 29
doi: 10.1186/1476-4598-5-29 pmid:16854228
190 Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11(12): 1487–1495
doi: 10.1038/ncb1998 pmid:19935649
191 Li J, Liang SH, Lu X. Potential role of ezrin and its related microRNA in ovarian cancer invasion and metastasis. Chin J Obstet Gynecol (Zhonghua Fu Chan Ke Za Zhi) 2010; 45(10): 787–792 (in Chinese)
pmid:21176563
192 Wang Y, Luo H, Li Y, Chen T, Wu S, Yang L. hsa-miR-96 up-regulates MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas. Mol Med Report 2012; 5(1): 260–265
pmid:21993544
193 Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer 2011; 11(1): 393
doi: 10.1186/1471-2407-11-393 pmid:21920043
194 Guazzi S, Price M, De Felice M, Damante G, Mattei MG, Di Lauro R. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 1990; 9(11): 3631–3639
pmid:1976511
195 Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996; 10(1): 60–69
doi: 10.1101/gad.10.1.60 pmid:8557195
196 Maeda Y, Davé V, Whitsett JA. Transcriptional control of lung morphogenesis. Physiol Rev 2007; 87(1): 219–244
doi: 10.1152/physrev.00028.2006 pmid:17237346
197 DeFelice M, Silberschmidt D, DiLauro R, Xu Y, Wert SE, Weaver TE, Bachurski CJ, Clark JC, Whitsett JA. TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression. J Biol Chem 2003; 278(37): 35574–35583
doi: 10.1074/jbc.M304885200 pmid:12829717
198 Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, Gerald WL, Powers S, Mu D. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 2007; 104(42): 16663–16668
doi: 10.1073/pnas.0708286104 pmid:17925434
199 Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K, Lee J, Choi YL, Sato M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, Minna JD, Pollack JR. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 2008; 27(25): 3635–3640
doi: 10.1038/sj.onc.1211012 pmid:18212743
200 Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S, Shimada Y, Osada H, Kosaka T, Matsubara H, Mitsudomi T, Sekido Y, Tanimoto M, Yatabe Y, Takahashi T. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 2007; 67(13): 6007–6011
doi: 10.1158/0008-5472.CAN-06-4774 pmid:17616654
201 Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, Shah K, Sato M, Thomas RK, Barletta JA, Borecki IB, Broderick S, Chang AC, Chiang DY, Chirieac LR, Cho J, Fujii Y, Gazdar AF, Giordano T, Greulich H, Hanna M, Johnson BE, Kris MG, Lash A, Lin L, Lindeman N, Mardis ER, McPherson JD, Minna JD, Morgan MB, Nadel M, Orringer MB, Osborne JR, Ozenberger B, Ramos AH, Robinson J, Roth JA, Rusch V, Sasaki H, Shepherd F, Sougnez C, Spitz MR, Tsao MS, Twomey D, Verhaak RG, Weinstock GM, Wheeler DA, Winckler W, Yoshizawa A, Yu S, Zakowski MF, Zhang Q, Beer DG, Wistuba II, Watson MA, Garraway LA, Ladanyi M, Travis WD, Pao W, Rubin MA, Gabriel SB, Gibbs RA, Varmus HE, Wilson RK, Lander ES, Meyerson M. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450(7171): 893–898
doi: 10.1038/nature06358 pmid:17982442
202 Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, Hubbard DD, DuPage MJ, Whittaker CA, Hoersch S, Yoon S, Crowley D, Bronson RT, Chiang DY, Meyerson M, Jacks T. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 2011; 473(7345): 101–104
doi: 10.1038/nature09881 pmid:21471965
203 Saito RA, Watabe T, Horiguchi K, Kohyama T, Saitoh M, Nagase T, Miyazono K. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res 2009; 69(7): 2783–2791
doi: 10.1158/0008-5472.CAN-08-3490 pmid:19293183
204 Qi J, Rice SJ, Salzberg AC, Runkle EA, Liao J, Zander DS, Mu D. MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle 2012; 11(1): 177–186
doi: 10.4161/cc.11.1.18576 pmid:22185756
205 Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27(1): 91–105
doi: 10.1016/j.molcel.2007.06.017 pmid:17612493
206 Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 1997; 386(6627): 852–855
doi: 10.1038/386852a0 pmid:9126746
207 Linnoila RI, Zhao B, DeMayo JL, Nelkin BD, Baylin SB, DeMayo FJ, Ball DW. Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res 2000; 60(15): 4005–4009
pmid:10945598
208 Nishikawa E, Osada H, Okazaki Y, Arima C, Tomida S, Tatematsu Y, Taguchi A, Shimada Y, Yanagisawa K, Yatabe Y, Toyokuni S, Sekido Y, Takahashi T. miR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 2011; 71(19): 6165–6173
doi: 10.1158/0008-5472.CAN-11-1020 pmid:21856745
209 Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9(3): 189–198
doi: 10.1016/j.ccr.2006.01.025 pmid:16530703
210 Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105(30): 10513–10518
doi: 10.1073/pnas.0804549105 pmid:18663219
211 Zheng D, Haddadin S, Wang Y, Gu LQ, Perry MC, Freter CE, Wang MX. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol 2011; 4(6): 575–586
pmid:21904633
212 Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol 2011; 6(3): 482–488
doi: 10.1097/JTO.0b013e318208c785 pmid:21258252
213 Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabrò E, Croce CM, Pastorino U, Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci USA 2011; 108(9): 3713–3718
doi: 10.1073/pnas.1100048108 pmid:21300873
214 Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, Alattar M, Deepak J, Stass SA, Jiang F. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 2010; 67(2): 170–176
doi: 10.1016/j.lungcan.2009.04.004 pmid:19446359
215 Bianchi F, Nicassio F, Marzi M, Belloni E, Dall’olio V, Bernard L, Pelosi G, Maisonneuve P, Veronesi G, Di Fiore PP. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med 2011; 3(8): 495–503
doi: 10.1002/emmm.201100154 pmid:21744498
216 Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010; 16(2): 430–441
doi: 10.1158/1078-0432.CCR-09-1736 pmid:20068076
217 Lebanony D, Benjamin H, Gilad S, Ezagouri M, Dov A, Ashkenazi K, Gefen N, Izraeli S, Rechavi G, Pass H, Nonaka D, Li J, Spector Y, Rosenfeld N, Chajut A, Cohen D, Aharonov R, Mansukhani M. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 2009; 27(12): 2030–2037
doi: 10.1200/JCO.2008.19.4134 pmid:19273703
218 Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, Cohen L, Dan H, Zion O, Strenov Y, Polak-Charcon S, Perelman M. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract 2010; 206(8): 578–584
doi: 10.1016/j.prp.2010.03.005 pmid:20418022
219 Xu JZ, Wong CW. Hunting for robust gene signature from cancer profiling data: sources of variability, different interpretations, and recent methodological developments. Cancer Lett 2010; 296(1): 9–16
doi: 10.1016/j.canlet.2010.05.008 pmid:20579805
220 Keller A, Leidinger P, Gislefoss R, Haugen A, Langseth H, Staehler P, Lenhof HP, Meese E. Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol 2011; 8(3): 506–516
doi: 10.4161/rna.8.3.14994 pmid:21558792
221 Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753–3756
doi: 10.1158/0008-5472.CAN-04-0637 pmid:15172979
222 Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y. let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 2007; 58(3): 392–396
doi: 10.1016/j.lungcan.2007.07.013 pmid:17728006
223 Liu XG, Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK, Zeng F, Zhou JH, Zhang YK. High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol 2011 Apr 24. [Epub ahead of print]
doi: 10.1007/s12032-011-9923-y
pmid:21516486
224 Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 2008; 54(10): 1696–1704
doi: 10.1373/clinchem.2007.101741 pmid:18719201
225 Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathé EA, Takenoshita S, Yokota J, Haugen A, Harris CC. The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin Cancer Res 2011; 17(7): 1875–1882
doi: 10.1158/1078-0432.CCR-10-2961 pmid:21350005
226 Voortman J, Goto A, Mendiboure J, Sohn JJ, Schetter AJ, Saito M, Dunant A, Pham TC, Petrini I, Lee A, Khan MA, Hainaut P, Pignon JP, Brambilla E, Popper HH, Filipits M, Harris CC, Giaccone G. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 2010; 70(21): 8288–8298
doi: 10.1158/0008-5472.CAN-10-1348 pmid:20978195
227 Wang ZX, Bian HB, Wang JR, Cheng ZX, Wang KM, De W. Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer. J Surg Oncol 2011; 104(7): 847–851
doi: 10.1002/jso.22008 pmid:21721011
228 Gallardo E, Navarro A, Vi?olas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 2009; 30(11): 1903–1909
doi: 10.1093/carcin/bgp219 pmid:19736307
229 V?sa U, Vooder T, Kolde R, Fischer K, V?lk K, T?nisson N, Roosipuu R, Vilo J, Metspalu A, Annilo T. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer 2011; 50(10): 812–822
doi: 10.1002/gcc.20902 pmid:21748820
230 Duncavage E, Goodgame B, Sezhiyan A, Govindan R, Pfeifer J. Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J Thorac Oncol 2010; 5(11): 1755–1763
doi: 10.1097/JTO.0b013e3181f3909d pmid:20975375
231 Navarro A, Diaz T, Gallardo E, Vi?olas N, Marrades RM, Gel B, Campayo M, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M. Prognostic implications of miR-16 expression levels in resected non-small-cell lung cancer. J Surg Oncol 2011; 103(5): 411–415
doi: 10.1002/jso.21847 pmid:21400525
232 Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, Bowles B, Weiss GJ. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 2010; 5(8): 1273–1278
doi: 10.1097/JTO.0b013e3181dea6be pmid:20548249
233 Donnem T, Lonvik K, Eklo K, Berg T, Sorbye SW, Al-Shibli K, Al-Saad S, Andersen S, Stenvold H, Bremnes RM, Busund LT. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer 2011; 117(14): 3193–3200
doi: 10.1002/cncr.25907 pmid:21264844
234 Donnem T, Eklo K, Berg T, Sorbye SW, Lonvik K, Al-Saad S, Al-Shibli K, Andersen S, Stenvold H, Bremnes RM, Busund LT. Prognostic impact of miR-155 in non-small cell lung cancer evaluated by in situ hybridization. J Transl Med 2011; 9(1): 6
doi: 10.1186/1479-5876-9-6 pmid:21219656
235 Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009; 69(14): 5776–5783
doi: 10.1158/0008-5472.CAN-09-0587 pmid:19584273
236 Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C, Shen H. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 2010; 28(10): 1721–1726
doi: 10.1200/JCO.2009.24.9342 pmid:20194856
237 Wang Z, Chen Z, Gao Y, Li N, Li B, Tan F, Tan X, Lu N, Sun Y, Sun J, Sun N, He J. DNA hypermethylation of microRNA-34b/c has prognostic value for stage I non-small cell lung cancer. Cancer Biol Ther 2011; 11(5): 490–496
doi: 10.4161/cbt.11.5.14550 pmid:21383543
238 Kitano K, Watanabe K, Emoto N, Kage H, Hamano E, Nagase T, Sano A, Murakawa T, Nakajima J, Goto A, Fukayama M, Yatomi Y, Ohishi N, Takai D. CpG island methylation of microRNAs is associated with tumor size and recurrence of non-small-cell lung cancer. Cancer Sci 2011; 102(12): 2126–2131
doi: 10.1111/j.1349-7006.2011.02101.x pmid:21917081
239 Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 2007; 16(9): 1124–1131
doi: 10.1093/hmg/ddm062 pmid:17400653
240 Megiorni F, Pizzuti A, Frati L.Clinical significance of microRNA expression profiles and polymorphisms in lung cancer development and management. Patholog Res Int 2011 ; 2011: Article ID 780652, 7 pages
doi: 10.4061/2011/780652
241 Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 2010; 70(7): 2789–2798
doi: 10.1158/0008-5472.CAN-09-3541 pmid:20332227
242 Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, Liang J, Liu P, Zhou X, Miao R, Ma H, Chen Y, Shen H. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 2009; 18(4): 1183–1187
doi: 10.1158/1055-9965.EPI-08-0814 pmid:19293314
243 Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, Shen H. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008; 118(7): 2600–2608
pmid:18521189
244 Kim JS, Choi YY, Jin G, Kang HG, Choi JE, Jeon HS, Lee WK, Kim DS, Kim CH, Kim YJ, Son JW, Jung TH, Park JY. Association of a common AGO1 variant with lung cancer risk: a two-stage case-control study. Mol Carcinog 2010; 49(10): 913–921
doi: 10.1002/mc.20672 pmid:20721975
245 Rotunno M, Zhao Y, Bergen AW, Koshiol J, Burdette L, Rubagotti M, Linnoila RI, Marincola FM, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E, Landi MT. Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br J Cancer 2010; 103(12): 1870–1874
doi: 10.1038/sj.bjc.6605976 pmid:21102586
246 Campayo M, Navarro A, Vi?olas N, Tejero R, Mu?oz C, Diaz T, Marrades R, Cabanas ML, Gimferrer JM, Gascon P, Ramirez J, Monzo M. A dual role for KRT81: a miR-SNP associated with recurrence in non-small-cell lung cancer and a novel marker of squamous cell lung carcinoma. PLoS ONE 2011; 6(7): e22509
doi: 10.1371/journal.pone.0022509 pmid:21799879
247 Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68(20): 8535–8540
doi: 10.1158/0008-5472.CAN-08-2129 pmid:18922928
248 Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer 2010; 69(1): 51–53
doi: 10.1016/j.lungcan.2009.09.008 pmid:19854534
249 Xiong F, Wu C, Chang J, Yu D, Xu B, Yuan P, Zhai K, Xu J, Tan W, Lin D. Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer. Cancer Res 2011; 71(15): 5175–5181
doi: 10.1158/0008-5472.CAN-10-4407 pmid:21676885
250 Yang L, Li Y, Cheng M, Huang D, Zheng J, Liu B, Ling X, Li Q, Zhang X, Ji W, Zhou Y, Lu J. A functional polymorphism at microRNA-629-binding site in the 3′-untranslated region of NBS1 gene confers an increased risk of lung cancer in Southern and Eastern Chinese population. Carcinogenesis 2012; 33(2):338–347
doi: 10.1093/carcin/bgr272 pmid:22114071
251 Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res 2010; 70(18): 7027–7030
doi: 10.1158/0008-5472.CAN-10-2010 pmid:20807816
252 He XY, Chen JX, Zhang Z, Li CL, Peng QL, Peng HM. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol 2010; 136(7): 1023–1028
doi: 10.1007/s00432-009-0747-5 pmid:20033209
253 Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29(11): 1580–1587
doi: 10.1038/onc.2009.445 pmid:19966857
254 Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7(6): 759–764
doi: 10.4161/cc.7.6.5834 pmid:18344688
255 Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 2011; 10(9): 1720–1727
doi: 10.1158/1535-7163.MCT-11-0220 pmid:21712475
256 Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18(9): 1650–1656
doi: 10.1038/mt.2010.136 pmid:20606648
257 Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010; 70(14): 5923–5930
doi: 10.1158/0008-5472.CAN-10-0655 pmid:20570894
258 Boudreau RL, Martins I, Davidson BL. Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009; 17(1): 169–175
doi: 10.1038/mt.2008.231 pmid:19002161
259 Wang QZ, Lv YH, Gong YH, Li ZF, Xu W, Diao Y, Xu R. Double-stranded Let-7 mimics, potential candidates for cancer gene therapy. J Physiol Biochem 2011 Nov 9. [Epub ahead of print]
doi: 10.1007/s13105-011-0124-0
pmid:22065350
260 Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs.’ Nature 2005; 438(7068): 685–689
doi: 10.1038/nature04303 pmid:16258535
261 Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtj?rn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452(7189): 896–899
doi: 10.1038/nature06783 pmid:18368051
262 Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4(9): 721–726
doi: 10.1038/nmeth1079 pmid:17694064
263 Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, Hansen HF, Koch T, Pappin D, Hannon GJ, Kauppinen S. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011; 43(4): 371–378
doi: 10.1038/ng.786 pmid:21423181
264 Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67(23): 11111–11116
doi: 10.1158/0008-5472.CAN-07-2858 pmid:18056433
265 Arora H, Qureshi R, Jin S, Park AK, Park WY. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp Mol Med 2011; 43(5): 298–304
doi: 10.3858/emm.2011.43.5.031 pmid:21464588
266 Jeong SH, Wu HG, Park WY. LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med 2009; 41(12): 912–918
doi: 10.3858/emm.2009.41.12.097 pmid:19745602
267 Arora H, Qureshi R, Park AK, Park WY. Coordinated regulation of ATF2 by miR-26b in γ-irradiated lung cancer cells. PLoS ONE 2011; 6(8): e23802
doi: 10.1371/journal.pone.0023802 pmid:21901137
268 Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther 2011; 12(10): 908–914
doi: 10.4161/cbt.12.10.17681 pmid:22027557
269 Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol 2011; 101(1): 171–176
doi: 10.1016/j.radonc.2011.05.050 pmid:21676478
270 Beal J. Therapy analysis—microRNA; update analysis. Pharmaprojects 2008; 29(4): 1–4
271 Bian HB, Pan X, Yang JS, Wang ZX, De W. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J Exp Clin Cancer Res 2011; 30(1): 20
doi: 10.1186/1756-9966-30-20 pmid:21329503
272 Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupé P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E, Kroemer G. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 2010; 70(5): 1793–1803
doi: 10.1158/0008-5472.CAN-09-3112 pmid:20145152
273 Guo L, Liu Y, Bai Y, Sun Y, Xiao F, Guo Y. Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 2010; 46(9): 1692–1702
doi: 10.1016/j.ejca.2010.02.043 pmid:20371173
274 Wang Q, Zhong M, Liu W, Li J, Huang J, Zheng L. Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Exp Lung Res 2011; 37(7): 427–434
doi: 10.3109/01902148.2011.584263 pmid:21787234
275 Zhu W, Shan X, Wang T, Shu Y, Liu P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010; 127(11): 2520–2529
doi: 10.1002/ijc.25260 pmid:20162574
276 Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, Shu Y, Liu P. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol 20 12; 29(1): 384–391
doi: 10.1007/s12032-010-9797-4 pmid:21258880
277 Feng B, Wang R, Chen LB. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting Plk1. Cancer Lett 2012 ; 317 (2): 184–191
doi: 10.1016/j.canlet.2011.11.024
278 Feng B, Wang R, Song HZ, Chen LB. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer 2011Dec2. [Epub ahead of print]
doi: 10.1002/cncr.26560
pmid:22139708
279 Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, Minna JD, Fang B, Roth JA. STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res 2011 ; 71(10): 3658–3668
doi: 10.1158/0008-5472.CAN-10-3647 pmid:21444672
[1] Tianzhuo Wang, Huiying Guo, Lei Zhang, Miao Yu, Qianchen Li, Jing Zhang, Yan Tang, Hongquan Zhang, Jun Zhan. FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression[J]. Front. Med., 2023, 17(4): 714-728.
[2] Xueqing Hu, Ujjwol Khatri, Tao Shen, Jie Wu. Progress and challenges in RET-targeted cancer therapy[J]. Front. Med., 2023, 17(2): 207-219.
[3] Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, Jie Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions[J]. Front. Med., 2023, 17(1): 18-42.
[4] Shi-Yong Sun. Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors[J]. Front. Med., 2022, 16(5): 701-713.
[5] Jianhua Shi, Ying Cheng, Qiming Wang, Kai Li, Lin Wu, Baohui Han, Gongyan Chen, Jianxing He, Jie Wang, Haifeng Qin, Xiaoling Li. Anlotinib as third- or further-line therapy for short-term relapsed small-cell lung cancer: subgroup analysis of a randomized phase 2 study (ALTER1202)[J]. Front. Med., 2022, 16(5): 766-772.
[6] Xiang Wang, Minghui Wang, Lin Feng, Jie Song, Xin Dong, Ting Xiao, Shujun Cheng. Four-protein model for predicting prognostic risk of lung cancer[J]. Front. Med., 2022, 16(4): 618-626.
[7] Yaru Tian, Hairong Tian, Xiaoyang Zhai, Hui Zhu, Jinming Yu. Bevacizumab in combination with pemetrexed and platinum for elderly patients with advanced non-squamous non-small-cell lung cancer: a retrospective analysis[J]. Front. Med., 2022, 16(4): 610-617.
[8] Wenjing Zhou, Jing Zhang, Mingkun Yan, Jin Wu, Shuo Lian, Kang Sun, Baiqing Li, Jia Ma, Jun Xia, Chaoqun Lian. Orlistat induces ferroptosis-like cell death of lung cancer cells[J]. Front. Med., 2021, 15(6): 922-932.
[9] Xin Wu, Zongqi Wang, Haiying Li, Xueshun Xie, Jiang Wu, Haitao Shen, Xiang Li, Zhong Wang, Gang Chen. Loss of monocarboxylate transporter 1 aggravates white matter injury after experimental subarachnoid hemorrhage in rats[J]. Front. Med., 2021, 15(6): 887-902.
[10] Na Qin, Yuancheng Li, Cheng Wang, Meng Zhu, Juncheng Dai, Tongtong Hong, Demetrius Albanes, Stephen Lam, Adonina Tardon, Chu Chen, Gary Goodman, Stig E. Bojesen, Maria Teresa Landi, Mattias Johansson, Angela Risch, H-Erich Wichmann, Heike Bickeboller, Gadi Rennert, Susanne Arnold, Paul Brennan, John K. Field, Sanjay Shete, Loic Le Marchand, Olle Melander, Hans Brunnstrom, Geoffrey Liu, Rayjean J. Hung, Angeline Andrew, Lambertus A. Kiemeney, Shan Zienolddiny, Kjell Grankvist, Mikael Johansson, Neil Caporaso, Penella Woll, Philip Lazarus, Matthew B. Schabath, Melinda C. Aldrich, Victoria L. Stevens, Guangfu Jin, David C. Christiani, Zhibin Hu, Christopher I. Amos, Hongxia Ma, Hongbing Shen. Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma[J]. Front. Med., 2021, 15(2): 275-291.
[11] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[12] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[13] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[14] Dalin Zhang, Liwei Qu, Bo Zhou, Guizhen Wang, Guangbiao Zhou. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas[J]. Front. Med., 2018, 12(3): 280-288.
[15] Hongbing Shen. Low-dose CT for lung cancer screening: opportunities and challenges[J]. Front. Med., 2018, 12(1): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed