Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (2) : 156-164    https://doi.org/10.1007/s11684-012-0197-3
REVIEW
The role of PARP1 in the DNA damage response and its application in tumor therapy
Zhifeng Wang1, Fengli Wang2, Tieshan Tang2(), Caixia Guo1()
1. Laboratory of Disease Genomics and Individual Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; 2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-strand break repair protein poly(ADP-ribose) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation of many key proteins in vivo and thus plays important roles in multiple DNA damage response pathways, rendering it a promising target in cancer therapy. The tumor-suppressor effects of PARP inhibitors have attracted significant interest for development of novel cancer therapies. However, recent evidence indicated that the underlying mechanism of PARP inhibitors in tumor therapy is more complex than previously expected. The present review will focus on recent progress on the role of PARP1 in the DNA damage response and PARP inhibitors in cancer therapy. The emerging resistance of BRCA-deficient tumors to PARP inhibitors is also briefly discussed from the perspective of DNA damage and repair. These recent research advances will inform the selection of patient populations who can benefit from the PARP inhibitor treatment and development of effective drug combination strategies.

Keywords PARP1      synthetic lethality      PARP inhibitor      DNA repair      cancer      NHEJ     
Corresponding Author(s): Tang Tieshan,Email:tangtsh@ioz.ac.cn; Guo Caixia,Email:guocx@big.ac.cn   
Issue Date: 05 June 2012
 Cite this article:   
Zhifeng Wang,Fengli Wang,Tieshan Tang, et al. The role of PARP1 in the DNA damage response and its application in tumor therapy[J]. Front Med, 2012, 6(2): 156-164.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0197-3
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I2/156
Fig.1  Schematic representation of human PARP1.
Zn: zinc finger motif; NLS: nuclear localization signal; BRCT: the breast cancer suppressor protein–1 (BRCA1) C-terminal domain; WGR: a domain with a most conserved motif (W/G/R).
Fig.2  The models of SSBR and HR repair initiated by PARP1. The left panel is SSBR, and the right panel is HR.
Fig.3  Schematic model of NHEJ. Left panel: D-NHEJ; right panel: B-NHEJ.
1 Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40(2): 179-204
doi: 10.1016/j.molcel.2010.09.019 pmid:20965415
2 Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361(15): 1475-1485
doi: 10.1056/NEJMra0804615 pmid:19812404
3 Friedberg EC, Walker GC, Siede W, Wood RD, Schultz R. DNA Repair and Mutagenesis. USA: Amer Society for Microbiology, 2005
4 Heitz F, Harter P, Ewald-Riegler N, Papsdorf M, Kommoss S, du Bois A. Poly(ADP-ribosyl)ation polymerases: mechanism and new target of anticancer therapy. Expert Rev Anticancer Ther 2010; 10(7): 1125-1136
doi: 10.1586/era.10.53 pmid:20645701
5 Hottiger MO, Hassa PO, Lüscher B, Schüler H, Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 2010; 35(4): 208-219
doi: 10.1016/j.tibs.2009.12.003 pmid:20106667
6 Langelier MF, Servent KM, Rogers EE, Pascal JM. A third zinc-binding domain of human poly(ADP-ribose) polymerase-1 coordinates DNA-dependent enzyme activation. J Biol Chem 2008; 283(7): 4105-4114
doi: 10.1074/jbc.M708558200 pmid:18055453
7 Tao Z, Gao P, Hoffman DW, Liu HW. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. Biochemistry 2008; 47(21): 5804-5813
doi: 10.1021/bi800018a pmid:18452307
8 Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70(3): 789-829
doi: 10.1128/MMBR.00040-05 pmid:16959969
9 de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Ménissier de Murcia J. Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 1994; 138(1-2): 15-24
doi: 10.1007/BF00928438 pmid:7898458
10 Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 2010; 10(4): 293-301
doi: 10.1038/nrc2812 pmid:20200537
11 Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 2005; 19(17): 1951-1967
doi: 10.1101/gad.1331805 pmid:16140981
12 Mangerich A, Bürkle A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int J Cancer 2011; 128(2): 251-265
doi: 10.1002/ijc.25683 pmid:20853319
13 Martin N, Schwamborn K, Schreiber V, Werner A, Guillier C, Zhang XD, Bischof O, Seeler JS, Dejean A. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock. EMBO J 2009; 28(22): 3534-3548
doi: 10.1038/emboj.2009.279 pmid:19779455
14 Casiano CA, Martin SJ, Green DR, Tan EM. Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 1996; 184(2): 765-770
doi: 10.1084/jem.184.2.765 pmid:8760832
15 D’Amours D, Sallmann FR, Dixit VM, Poirier GG. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J Cell Sci 2001; 114(Pt 20): 3771-3778
pmid:11707529
16 Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53(17): 3976-3985
pmid:8358726
17 Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet 2008; 9(8): 619-631
pmid:18626472
18 Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 2007; 282(22): 16441-16453
doi: 10.1074/jbc.M608406200 pmid:17428792
19 Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006; 7(7): 517-528
doi: 10.1038/nrm1963 pmid:16829982
20 Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 2009; 28(17): 2601-2615
doi: 10.1038/emboj.2009.206 pmid:19629035
21 Oikawa A, Tohda H, Kanai M, Miwa M, Sugimura T. Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem Biophys Res Commun 1980; 97(4): 1311-1316
doi: 10.1016/S0006-291X(80)80009-X pmid:6260088
22 Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 1997; 11(18): 2347-2358
doi: 10.1101/gad.11.18.2347 pmid:9308963
23 Robinson KM, Schultz MC. Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Mol Cell Biol 2003; 23(22): 7937-7946
doi: 10.1128/MCB.23.22.7937-7946.2003 pmid:14585955
24 Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res 2003; 31(17): 4959-4964
doi: 10.1093/nar/gkg703 pmid:12930944
25 Yang YG, Cortes U, Patnaik S, Jasin M, Wang ZQ. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 2004; 23(21): 3872-3882
doi: 10.1038/sj.onc.1207491 pmid:15021907
26 Citarelli M, Teotia S, Lamb RS. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol Biol 2010; 10(1): 308
doi: 10.1186/1471-2148-10-308 pmid:20942953
27 Aguilar-Quesada R, Mu?oz-Gámez JA, Martín-Oliva D, Peralta A, Valenzuela MT, Matínez-Romero R, Quiles-Pérez R, Menissier-de Murcia J, de Murcia G, Ruiz de Almodóvar M, Oliver FJ. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol 2007; 8(1): 29
doi: 10.1186/1471-2199-8-29 pmid:17459151
28 Hochegger H, Dejsuphong D, Fukushima T, Morrison C, Sonoda E, Schreiber V, Zhao GY, Saberi A, Masutani M, Adachi N, Koyama H, de Murcia G, Takeda S. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J 2006; 25(6): 1305-1314
doi: 10.1038/sj.emboj.7601015 pmid:16498404
29 Audebert M, Salles B, Calsou P. Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochem Biophys Res Commun 2008; 369(3): 982-988
doi: 10.1016/j.bbrc.2007.11.132 pmid:18054777
30 Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34(21): 6170-6182
doi: 10.1093/nar/gkl840 pmid:17088286
31 Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711(1-2): 61-72
doi: 10.1016/j.mrfmmm.2011.02.005 pmid:21329706
32 Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38(18): 6065-6077
doi: 10.1093/nar/gkq387 pmid:20483915
33 Perrault R, Wang H, Wang M, Rosidi B, Iliakis G. Backup pathways of NHEJ are suppressed by DNA-PK. J Cell Biochem 2004; 92(4): 781-794
doi: 10.1002/jcb.20104 pmid:15211575
34 Cheng Q, Barboule N, Frit P, Gomez D, Bombarde O, Couderc B, Ren GS, Salles B, Calsou P. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res 2011; 39(22): 9605-9619
doi: 10.1093/nar/gkr656 pmid:21880593
35 Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA 2011; 108(8): 3406-3411
doi: 10.1073/pnas.1013715108 pmid:21300883
36 Li B, Navarro S, Kasahara N, Comai L. Identification and biochemical characterization of a Werner’s syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 2004; 279(14): 13659-13667
doi: 10.1074/jbc.M311606200 pmid:14734561
37 Shaheen M, Allen C, Nickoloff JA, Hromas R. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 2011; 117(23): 6074-6082
doi: 10.1182/blood-2011-01-313734 pmid:21441464
38 O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 2011; 364(3): 205-214
doi: 10.1056/NEJMoa1011418 pmid:21208101
39 Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913-917
doi: 10.1038/nature03443 pmid:15829966
40 Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917-921
doi: 10.1038/nature03445 pmid:15829967
41 Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, Waldman T, Lord CJ, Ashworth A. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 2009; 1(6-7): 315-322
doi: 10.1002/emmm.200900041 pmid:20049735
42 Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 2008; 8(4): 363-369
doi: 10.1016/j.coph.2008.06.016 pmid:18644251
43 Tong WM, Yang YG, Cao WH, Galendo D, Frappart L, Shen Y, Wang ZQ. Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 2007; 26(26): 3857-3867
doi: 10.1038/sj.onc.1210156 pmid:17160013
44 Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, Wang ZQ, Anisimov VN. Deficiency in poly(ADP-ribose) polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res 2008; 2008: 754190
pmid:19415146
45 Morrison C, Smith GC, Stingl L, Jackson SP, Wagner EF, Wang ZQ. Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nat Genet 1997; 17(4): 479-482
doi: 10.1038/ng1297-479 pmid:9398855
46 Tsutsumi M, Masutani M, Nozaki T, Kusuoka O, Tsujiuchi T, Nakagama H, Suzuki H, Konishi Y, Sugimura T. Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout mice to nitrosamine carcinogenicity. Carcinogenesis 2001; 22(1): 1-3
doi: 10.1093/carcin/22.1.1 pmid:11159733
47 Chiarugi A. A snapshot of chemoresistance to PARP inhibitors. Trends Pharmacol Sci 2012; 33(1): 42-48
doi: 10.1016/j.tips.2011.10.001 pmid:22055391
48 Ashworth A. Drug resistance caused by reversion mutation. Cancer Res 2008; 68(24): 10021-10023
doi: 10.1158/0008-5472.CAN-08-2287 pmid:19074863
49 Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J, Reis-Filho JS, Ashworth A. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451(7182): 1111-1115
doi: 10.1038/nature06548 pmid:18264088
50 Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123-134
doi: 10.1056/NEJMoa0900212 pmid:19553641
51 Domagala P, Huzarski T, Lubinski J, Gugala K, Domagala W. PARP-1 expression in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible implications for PARP-1 inhibitor therapy. Breast Cancer Res Treat 2011; 127(3): 861-869
doi: 10.1007/s10549-011-1441-2 pmid:21409392
52 Gottipati P, Vischioni B, Schultz N, Solomons J, Bryant HE, Djureinovic T, Issaeva N, Sleeth K, Sharma RA, Helleday T. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res 2010; 70(13): 5389-5398
doi: 10.1158/0008-5472.CAN-09-4716 pmid:20551068
53 Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, Haffty BG, Tommiska J, Blomqvist C, Drapkin R, Adams DJ, Nevanlinna H, Bartek J, Tarsounas M, Ganesan S, Jonkers J. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010; 17(6): 688-695
doi: 10.1038/nsmb.1831 pmid:20453858
54 Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, Xu X, Deng CX, Finkel T, Nussenzweig M, Stark JM, Nussenzweig A. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010; 141(2): 243-254
doi: 10.1016/j.cell.2010.03.012 pmid:20362325
55 Aly A, Ganesan S. BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability. J Mol Cell Biol 2011; 3(1): 66-74
doi: 10.1093/jmcb/mjq055 pmid:21278454
56 Wang X, Weaver DT. The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am J Cancer Res 2011; 1(3): 301-327
pmid:21968427
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[3] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[4] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[5] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[6] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[7] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[8] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[9] Tao Wang, Florent Chuffart, Ekaterina Bourova-Flin, Jin Wang, Jianqing Mi, Sophie Rousseaux, Saadi Khochbin. Histone variants: critical determinants in tumour heterogeneity[J]. Front. Med., 2019, 13(3): 289-297.
[10] Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front. Med., 2019, 13(1): 83-93.
[11] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[12] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[13] Chenfei Zhou, Jun Zhang. Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects[J]. Front. Med., 2019, 13(1): 12-23.
[14] Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie. Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy[J]. Front. Med., 2018, 12(6): 667-677.
[15] Patrick A. Carroll, Brian W. Freie, Haritha Mathsyaraja, Robert N. Eisenman. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis[J]. Front. Med., 2018, 12(4): 412-425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed