Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (2) : 195-203    https://doi.org/10.1007/s11684-012-0189-3
Research Article
Improved dissolution and anti-inflammatory effect of ibuprofen by solid dispersion
Liyuan Chen1, Qifeng Dang1, Chengsheng Liu1(), Jun Chen2, Lei Song1, Xiguang Chen1
1. College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; 2. Department of Surgery, the Commercial Staff & Workers Hospital of Qingdao, Qingdao 266011, China
 Download: PDF(397 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The purpose of this study was to improve the dissolution rate and anti-inflammatory effect of ibuprofen by a solid dispersion (SD) method. Initial screening was developed based on drug solubility in carriers in the liquid state to select a suitable water-soluble carrier system for the preparation of SDs. The dissolution of ibuprofen in urea was higher than in PEG4000 or mannitol. Thus, urea was selected as the carrier for the preparation of SDs. SDs were characterized in terms of dissolution, differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Solid dispersion-based (SDBT) and conventional (CT) tablets were prepared by the wet granulation method. The anti-inflammatory effect of SDBT was evaluated using the mouse ear edema test with xylene. In vitro release results indicated that the ibuprofen dissolution rate was improved by the SD. SD characterization results suggested that ibuprofen partly precipitates in crystalline and amorphous forms after SD preparation and that ibuprofen and urea do not interact. SDBT displayed more significant anti-inflammatory effects than CT. The dissolution rate and anti-inflammatory effect of ibuprofen were significantly enhanced by the ibuprofen-urea SD.

Keywords ibuprofen      solid dispersion      physical mixture      dissolution      anti-inflammatory effect     
Corresponding Author(s): Liu Chengsheng,Email:Liucs@ouc.edu.cn   
Issue Date: 05 June 2012
 Cite this article:   
Liyuan Chen,Qifeng Dang,Chengsheng Liu, et al. Improved dissolution and anti-inflammatory effect of ibuprofen by solid dispersion[J]. Front Med, 2012, 6(2): 195-203.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0189-3
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I2/195
Formulation nameIngredient (mg)
IbuprofenDextrinSucroseStarchSodium hydroxymethyl starchMagnesium stearate
CT1012.55037.58.51
SDBTa10a12.55037.58.51
Tab.1  Conventional- and solid-dispersion-based ibuprofen tablet formulations
Fig.1  Solubility of ibuprofen in hydrophilic carriers and water mixtures.
Fig.2  The scanning spectrometer of urea (A) and ibuprofen (B).
Fig.3  dissolution of pure ibuprofen, IUSDs at 1:1, 1:2, 1:5, and 1:10 ratio, and IUPM at 1:10 ratio ( = 37 °C).
Fig.4  FTIR spectrograms of ibuprofen-urea SDs at 1: 10 ratio (A), ibuprofen-urea physical mixture at 1: 10 ratio (B), pure urea (C), and pure ibuprofen (D).
Fig.5  DSC thermograms of pure ibuprofen (A), pure urea (B), ibuprofen-urea physical mixture at 1: 10 ratio (C), and ibuprofen-urea SDs at 1:10 ratio (D).
Fig.6  X-Ray diffractograms of pure ibuprofen (A), ibuprofen-urea SDs at 1:10 ratio (B), ibuprofen-urea physical mixture at 1:10 ratio (C), and pure urea (D). Arrows indicate the characteristic diffraction peaks of ibuprofen.
Fig.7  SEM pictures of pure ibuprofen (A), pure urea (B), ibuprofen-urea physical mixture at 1:10 ratio (C), and ibuprofen-urea SDs at 1:10 ratio (D).
TreatmentEdema weight (mg)Inhibition (%)
Saline2.3±0.9-
CT1.2±0.4*45.6
SDBT0.7±0.6**67.6
Tab.2  Effect of SDBT and CT on xylene-induced edema on mouse ear
Fig.8  Photomicrograph of transverse sections of mice ears sensitized with topical application of xylene (B to D) or non-inflamed (A), stained with hematoxylin-eosin and examined under a light microscope (scale bar, 50 μm). Treatments: saline (B), CT (C), and SDBT (D). Numbers 1 and 2 indicate the epidermis and dermis, respectively. Arrows indicate the inflammatory cells (polymorphonuclear neutrophils) in the dermis. The sections are representative of eight animals per group.
1 Nayak A, Jain A. In vitro and in vivo study of poly(ethylene glycol) conjugated ibuprofen to extend the duration of action. Sci Pharm 2011; 79(2): 359-373
doi: 10.3797/scipharm.0911-07 pmid:21773072
2 Liu C, Desai KG. Characteristics of rofecoxib-polyethylene glycol 4000 solid dispersions and tablets based on solid dispersions. Pharm Dev Technol 2005; 10(4): 467-477
doi: 10.1080/10837450500299701 pmid:16370176
3 Han HK, Lee BJ, Lee HK. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: in vitro and in vivo evaluation. Int J Pharm 2011; 415(1-2):89-94
doi: 10.1016/j.ijpharm.2011.05.055 pmid:21645596
4 Newa M, Bhandari KH, Li DX, Kwon TH, Kim JA, Yoo BK, Woo JS, Lyoo WS, Yong CS, Choi HG. Preparation, characterization and in vivo evaluation of ibuprofen binary solid dispersions with poloxamer 188. Int J Pharm 2007; 343(1-2): 228-237
doi: 10.1016/j.ijpharm.2007.05.031 pmid:17597315
5 Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60
doi: 10.1016/S0939-6411(00)00076-X pmid:10840192
6 Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 1999; 88(10): 1058-1066
doi: 10.1021/js980403l1 pmid:0514356
7 Ghosh I, Snyder J, Vippagunta R, Alvine M, Vakil R, Tong WQ, Vippagunta S. Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder. Int J Pharm 2011; 419(1-2): 12-19
doi: 10.1016/j.ijpharm.2011.05.073 pmid:21782911
8 Rao KR, Nagabhushanam MV, Chowdary KP. In vitro dissolution studies on solid dispersions of mefenamic acid. Indian J Pharm Sci 2011; 73(2): 243-247 dio: 10.4103/0250-474X.91575 PMID: 22303074
9 Bikiaris DN. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8(11):1501-1519
doi: 10.1517/17425247.2011.618181 pmid:21919807
10 Lloyd GR, Craig DQ, Smith A. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions. Eur J Pharm Biopharm 1999; 48(1): 59-65
doi: 10.1016/S0939-6411(99)00022-31 pmid:0477330
11 Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 2004; 272(1-2): 1-10
doi: 10.1016/j.ijpharm.2003.11.025 pmid:15019063
12 Maheshwari M, Ketkar AR, Chauhan B, Patil VB, Paradkar AR. Preparation and characterization of ibuprofen-cetyl alcohol beads by melt solidification technique: effect of variables. Int J Pharm 2003; 261(1-2): 57-67
doi: 10.1016/S0378-5173(03)00292-81 pmid:2878395
13 Arias MJ, Ginés JM, Moyano JR, Rabasco AM. Dissolution properties and in vivo behaviour of triamterene in solid dispersions with polyethylene glycols. Pharm Acta Helv 1996; 71(4): 229-235
doi: 10.1016/S0031-6865(96)00017-9 pmid:8921741
14 ?zkan Y, Do?anay N, Dikmen N, I?imer A. Enhanced release of solid dispersions of etodolac in polyethylene glycol. Farmaco 2000; 55(6-7): 433-438
doi: 10.1016/S0014-827X(00)00062-8 pmid:11204743
15 Moneghini M, Bellich B, Baxa P, Princivalle F. Microwave generated solid dispersions containing Ibuprofen. Int J Pharm 2008; 361(1-2): 125-130
doi: 10.1016/j.ijpharm.2008.05.026 pmid:18573321
16 Majid Khan G, Bi Zhu J. Ibuprofen release kinetics from controlled-release tablets granulated with aqueous polymeric dispersion of ethylcellulose II: influence of several parameters and coexcipients. J Control Release 1998; 56(1-3): 127-134
doi: 10.1016/S0168-3659(98)00080-7 pmid:9801436
17 Al-Hamidi H, Edwards AA, Mohammad MA, Nokhodchi A. To enhance dissolution rate of poorly water-soluble drugs: glucosamine hydrochloride as apotential carrier in solid dispersion formulations. Colloid Surface B 2010; 76(1): 170-178
doi: 10.1016/j.colsurfb.2009.10.0301 pmid:9945828
18 Hernández I, Márquez L, Martínez I, Dieguez R, Delporte C, Prieto S, Molina-Torres J, Garrido G. Anti-inflammatory effects of ethanolic extract and alkamides-derived from Heliopsis longipes roots. J Ethnopharmacol 2009; 124(3): 649-652
doi: 10.1016/j.jep.2009.04.0601 pmid:9439170
19 Saraiva RA, Araruna MK, Oliveira RC, Menezes KD, Leite GO, Kerntopf MR, Costa JG, Rocha JB, Tomé AR, Campos AR, Menezes IR. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. J Ethnopharmacol 2011; 136(3): 504-510
doi: 10.1016/j.jep.2010.07.002 pmid:20621180
20 Ladrón de Guevara-Fern S, Ragel CV, Vallet-Regí M. Bioactive glass-polymer materials for controlled release of ibuprofen. Biomaterials 2003; 24(22): 4037-4043
doi: 10.1016/S0142-9612(03)00279-5 pmid:12834599
21 Paroj?i? J, Corrigan OI. Rationale for ibuprofen co-administration with antacids: potential interaction mechanisms affecting drug absorption. Eur J Pharm Biopharm 2008; 69(2): 640-647
doi: 10.1016/j.ejpb.2008.01.001 pmid:18280125
22 Zajc N, Obreza A, Bele M, Srcic S. Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method. Int J Pharm 2005; 291(1-2): 51-58
doi: 10.1016/j.ijpharm.2004.07.042 pmid:15707731
23 Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231(2): 131-144
doi: 10.1016/S0378-5173(01)00891-2 pmid:11755266
24 Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions based on PEG/polymer blends. Int J Pharm 2010; 390(2): 165-173
doi: 10.1016/j.ijpharm.2010.01.039 pmid:20132875
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed