Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    0, Vol. Issue () : 231-241    https://doi.org/10.1007/s11684-013-0253-7
REVIEW
Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins
Sandy Leung-Kuen Au, Irene Oi-Lin Ng(), Chun-Ming Wong()
State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
 Download: PDF(319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hepatocellular carcinoma (HCC) development is characterized by the presence of epigenetic alterations, including promoter DNA hypermethylation and post-translational modifications of histone, which profoundly affect expression of a wide repertoire of genes critical for cancer development. Emerging data suggest that deregulation of polycomb group (PcG) proteins, which are key chromatin modifiers repressing gene transcription during developmental stage, plays a causative role in oncogenesis. PcG proteins assemble into polycomb repressive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2) to impose the histone H3 lysine 27 trimethylation (H3K27me3) modification for repression. In this review, we will first recapitulate the mechanisms of two key epigenetic pathways: DNA methylation and histone modifications. Specifically, we will focus our discussion on the molecular roles of PcG proteins. Next, we will highlight recent findings on PcG proteins, their clinicopathological implication and their downstream molecular consequence in hepatocarcinogenesis. Last but not least, we will consider the therapeutic potential of targeting enhancer of zeste homolog 2 (EZH2) as a possible treatment for HCC. Improving our understanding on the roles of PcG proteins in hepatocarcinogenesis can benefit the development of epigenetic-based therapy.

Keywords liver cancer      epigenetics      histone modifications      polycomb group proteins      enhancer of zeste homolog 2 (EZH2)     
Corresponding Author(s): Ng Irene Oi-Lin,Email:iolng@hkucc.hku.hk; Wong Chun-Ming,Email:jackwong@pathology.hku.hk   
Issue Date: 05 June 2013
 Cite this article:   
Sandy Leung-Kuen Au,Irene Oi-Lin Ng,Chun-Ming Wong. Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins[J]. Front Med, 0, (): 231-241.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0253-7
https://academic.hep.com.cn/fmd/EN/Y0/V/I/231
Fig.1  Post-translational modification of histone amino (N)-terminal tails. The nucleosome contains an octamer of histone molecules (2 copies of histone H2A, H2B, H3 and H4) wrapped around by 147 bp of DNA strand. Histone N-terminal tails protruding from nucleosome core are subject to variety of post-translational modifications at the specific amino acid residues. Me: methylation; P: phosphorylation; Ac: acetylation; Ub: ubiquitylation.
Type of histone PTMsModification siteTranscriptional role
Lysine acetylationH3 (9th, 14th,18th, 56th)H4 (5th, 8th, 13th, 16th)H2A, H2BActivation
Lysine methylationH3 (4th, 36th, 79th)H3 (9th, 27th), H4 (20th)ActivationRepression
Serine/threonine phosphorylationH3 (3rd, 10th, 28th)H2A, H2BActivation
Arginine methylationH3 (17th, 23rd), H4 (3rd)Activation
Lysine ubiquitylationH2A (119th)H2B (120th)RepressionActivation
Lysine sumoylationH2A (126th), H2B (6th/7th)Repression
Proline isomerizationH3 (30th-38th)Activation/repression
Tab.1  Histone post-translational modifications (PTMs) convey specific transcriptional consequence
Fig.2  Polycomb group proteins assemble into two central complexes, the polycomb repressive complex 2 (PCR2) and polycomb repressive complex 1 (PRC1). In the PRC2, the core subunits include EZH2, EED and SUZ12. In the PRC1, the core subunits include RING1A/1B, BMI1 and CBX. Other substoichiometric subunits are also shown.
Fig.3  PcG-mediated epigenetic silencing. In the canonical model, PRC2 is recruited to target gene loci and EZH2 catalyzes trimethylation on histone H3 lysine 27 (H3K27me3). Subsequently, PRC1 is recruited to the site, of which the chromodomain of CBX proteins can recognize and bind to the H3K27me3 mark. RING1A/1B can further monoubiquitylate histone H2A lysine 119 (H2AK119ub1). Altogether, a repressive chromatin environment is established to inhibit transcription
PcG proteinExpressionin HCCMolecular consequenceReferences
PRC2EZH2IncreasedSilenced multiple tumor suppressor miRNAs (e.g., miR-139-5p, miR-125b) to promote metastasis [41]
Repressed Wnt antagonists (e.g., AXIN2, NKD1, PRICKLE1) to promote proliferation [44]
Inhibition of EZH2 downregulated stathmin1 to restrain tumor growth [85]
SUZ12Increased? [41]
DecreasedInduced SUZ12/PcG targets (e.g., IGFII, DKK2, DLK1) reexpression during HBV-mediated transformation [55]
EEDIncreased? [41]
PRC1BMI1IncreasedCooperated with the activated Ras signaling to drive HCC tumorigenicity [63]
Maintained self-renewal property of liver tumor-initiating cells [65]
RING1A/1B??
CBX?Cbx7 knockout mice were prone to developing HCC [69]
YY1Increased?[72,73]
RYBPDecreased?[77]
Tab.2  Aberrant expressions of core polycomb group (PcG) proteins and their molecular consequence in HCC development
1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69–90
doi: 10.3322/caac.20107 pmid:21296855
2 Ferlay Ja. GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC CancerBase. 2008; Available from: http://globocan.iarc.fr/(Accessed on October 1, 2012)
3 Tang ZY. Hepatocellular carcinoma—cause, treatment and metastasis. World J Gastroenterol 2001; 7(4): 445–454
pmid:11819809
4 Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128(4): 683–692
doi: 10.1016/j.cell.2007.01.029 pmid:17320506
5 Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21(2): 163–167
doi: 10.1038/5947 pmid:9988266
6 Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975; 14(1): 9–25
doi: 10.1159/000130315 pmid:1093816
7 Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975; 187(4173): 226–232
doi: 1111098" target="_blank">10.1126/science. pmid:1111098 pmid:1111098
8 Kondoh N, Wakatsuki T, Hada A, Shuda M, Tanaka K, Arai M, Yamamoto M. Genetic and epigenetic events in human hepatocarcinogenesis. Int J Oncol 2001; 18(6): 1271–1278
pmid:11351262
9 Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002; 3(6): 415–428
pmid:12042769
10 Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol 1999; 9(5): 329–337
doi: 10.1006/scbi.1999.0133 pmid:10547341
11 Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19(2): 187–191
doi: 10.1038/561 pmid:9620779
12 Wong CM, Ng YL, Lee JM, Wong CC, Cheung OF, Chan CY, Tung EK, Ching YP, Ng IO. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology 2007; 45(5): 1129–1138
doi: 10.1002/hep.21578 pmid:17464989
13 Tung EK, Wong CM, Yau TO, Lee JM, Ching YP, Ng IO. HAI-2 is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for anti-invasive functions. Int J Cancer 2009; 124(8): 1811–1819
doi: 10.1002/ijc.24115 pmid:19107935
14 Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983; 11(19): 6883–6894
doi: 10.1093/nar/11.19.6883 pmid:6314264
15 Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 2009; 19(6): 959–966
doi: 10.1101/gr.083451.108 pmid:19273618
16 Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 2010; 101(1): 36–45
doi: 10.1111/j.1349-7006.2009.01383.x pmid:19891661
17 Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21(35): 5400–5413
doi: 10.1038/sj.onc.1205651 pmid:12154403
18 Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 2001; 33(3): 561–568
doi: 10.1053/jhep.2001.22507 pmid:11230735
19 Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999; 98(3): 285–294
doi: 10.1016/S0092-8674(00)81958-3 pmid:10458604
20 B?hm L, Crane-Robinson C. Proteases as structural probes for chromatin: the domain structure of histones. Biosci Rep 1984; 4(5): 365–386
doi: 10.1007/BF01122502 pmid:6375755
21 Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765): 41–45
doi: 10.1038/47412 pmid:10638745
22 Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074–1080
doi: 10.1126/science.1063127 pmid:11498575
23 Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276(5688): 565–570
doi: 10.1038/276565a0 pmid:103000
24 Levine SS, King IF, Kingston RE. Division of labor in polycomb group repression. Trends Biochem Sci 2004; 29(9): 478–485
doi: 10.1016/j.tibs.2004.07.007 pmid:15337121
25 Otte AP, Kwaks TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 2003; 13(5): 448–454
doi: 10.1016/S0959-437X(03)00108-4 pmid:14550408
26 Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 2002; 298(5595): 1039–1043
doi: 10.1126/science.1076997 pmid:12351676
27 Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 2009; 138(5): 885–897
doi: 10.1016/j.cell.2009.08.020 pmid:19737517
28 Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003; 300(5616): 131–135
doi: 10.1126/science.1084274 pmid:12649488
29 Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32(2): 232–246
doi: 10.1016/j.molcel.2008.08.022 pmid:18951091
30 Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311–1323
doi: 10.1016/j.cell.2007.05.022 pmid:17604720
31 Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125(2): 301–313
doi: 10.1016/j.cell.2006.02.043 pmid:16630818
32 Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20(9): 1123–1136
doi: 10.1101/gad.381706 pmid:16618801
33 Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441(7091): 349–353
doi: 10.1038/nature04733 pmid:16625203
34 Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009; 36(1): 61–74
doi: 10.1016/j.molcel.2009.08.008 pmid:19818710
35 Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol 2005 24;15(10): 942–947 15916951
doi: 10.1016/j.cub.2005.04.051
36 Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004; 23(20): 4061–4071
doi: 10.1038/sj.emboj.7600402 pmid:15385962
37 Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15(1): 57–67
doi: 10.1016/j.molcel.2004.06.020 pmid:15225548
38 Cai MY, Tong ZT, Zheng F, Liao YJ, Wang Y, Rao HL, Chen YC, Wu QL, Liu YH, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D. EZH2 protein: a promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies. Gut 2011; 60(7): 967–976
doi: 10.1136/gut.2010.231993 pmid:21330577
39 Sasaki M, Ikeda H, Itatsu K, Yamaguchi J, Sawada S, Minato H, Ohta T, Nakanuma Y. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88(8): 873–882
doi: 10.1038/labinvest.2008.52 pmid:18591938
40 Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, Wakiyama S, Fujita H, Shirouzu K, Mori M. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 2005; 92(9): 1754–1758
doi: 10.1038/sj.bjc.6602531 pmid:15856046
41 Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, Wong CM. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 2012; 56(2): 622–631
doi: 10.1002/hep.25679 pmid:22370893
42 Cai MY, Hou JH, Rao HL, Luo RZ, Li M, Pei XQ, Lin MC, Guan XY, Kung HF, Zeng YX, Xie D. High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 2011; 17(1–2): 12–20
doi: 10.2119/molmed.2010.00103 pmid:20844838
43 Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets 2008; 9(11): 1013–1024
doi: 10.2174/138945008786786127 pmid:18991612
44 Cheng AS, Lau SS, Chen Y, Kondo Y, Li MS, Feng H, Ching AK, Cheung KF, Wong HK, Tong JH, Jin H, Choy KW, Yu J, To KF, Wong N, Huang TH, Sung JJ. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res 2011; 71(11): 4028–4039
doi: 10.1158/0008-5472.CAN-10-3342 pmid:21512140
45 Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008; 12(6A): 2189–2204
doi: 10.1111/j.1582-4934.2008.00533.x pmid:19120703
46 Ji J, Wang XW. New kids on the block: diagnostic and prognostic microRNAs in hepatocellular carcinoma. Cancer Biol Ther 2009; 8(18): 1686–1693
pmid:19901517
47 Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12(2): 99–110
doi: 10.1038/nrg2936 pmid:21245828
48 Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 2012; 61(2): 278–289
doi: 10.1136/gut.2011.239145 pmid:21672940
49 Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322(5908): 1695–1699
doi: 10.1126/science.1165395 pmid:19008416
50 Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, M?ller P, Stilgenbauer S, Pollack JR, Wirth T. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112(10): 4202–4212
doi: 10.1182/blood-2008-03-147645 pmid:18713946
51 Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, Wang R, Li Y, Dahiya A, Wang L, Pandhi M, Lonigro RJ, Wu YM, Tomlins SA, Palanisamy N, Qin Z, Yu J, Maher CA, Varambally S, Chinnaiyan AM. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 2011; 20(2): 187–199
doi: 10.1016/j.ccr.2011.06.016 pmid:21840484
52 Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 2006; 16(7): 890–900
doi: 10.1101/gr.5306606 pmid:16751344
53 Kirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2(1): 113–121
pmid:12533679
54 Wang WH, Studach LL, Andrisani OM. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 2011; 53(4): 1137–1147
doi: 10.1002/hep.24163 pmid:21480320
55 Studach LL, Menne S, Cairo S, Buendia MA, Hullinger RL, Lefran?ois L, Merle P, Andrisani OM. A subset of Suz12/PRC2 target genes is activated during HBV replication and liver carcinogenesis associated with hepatitis B virus X protein.Hepatology 2012; 56(4): 1240–1251
doi: 10.1002/hep.25781 pmid:22505317
56 Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012; 45(3): 344–356
doi: 10.1016/j.molcel.2012.01.002 pmid:22325352
57 Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA, Di Croce L. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 2012; 10(1): 47–62
doi: 10.1016/j.stem.2011.12.006 pmid:22226355
58 van der Lugt NM, Alkema M, Berns A, Deschamps J. The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression. Mech Dev 1996; 58(1–2): 153–164
doi: 10.1016/S0925-4773(96)00570-9 pmid:8887324
59 Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M, Koseki H. A role for mel-18, a polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton. Development 1996; 122(5): 1513–1522
pmid:8625838
60 Effendi K, Mori T, Komuta M, Masugi Y, Du W, Sakamoto M. Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci 2010; 101(3): 666–672
doi: 10.1111/j.1349-7006.2009.01431.x pmid:20085590
61 Wang H, Pan K, Zhang HK, Weng DS, Zhou J, Li JJ, Huang W, Song HF, Chen MS, Xia JC. Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 2008; 134(5): 535–541
doi: 10.1007/s00432-007-0316-8 pmid:17917742
62 Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 2010; 17(4): 294–299
doi: 10.1097/MOH.0b013e328338c439 pmid:20308890
63 Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, Dimri GP, Chen X. Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis. Mol Cancer Res 2009; 7(12): 1937–1945
doi: 10.1158/1541-7786.MCR-09-0333 pmid:19934271
64 Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, Miyoshi H, Nakano M, Zen Y, Nakanuma Y, Nakauchi H, Iwama A, Taniguchi H. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology 2007; 133(3): 937–950
doi: 10.1053/j.gastro.2007.06.016 pmid:17673212
65 Chiba T, Miyagi S, Saraya A, Aoki R, Seki A, Morita Y, Yonemitsu Y, Yokosuka O, Taniguchi H, Nakauchi H, Iwama A. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 2008; 68(19): 7742–7749
doi: 10.1158/0008-5472.CAN-07-5882 pmid:18829528
66 O’Loghlen A, Mu?oz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F, Masui O, Vermeulen M, Carroll T, Graumann J, Heard E, Dillon N, Azuara V, Snijders AP, Peters G, Bernstein E, Gil J. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 2012; 10(1): 33–46
doi: 10.1016/j.stem.2011.12.004 pmid:22226354
67 Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T, Borner M, Diamantis I, Esposito F, Brunner T, Zimmermann A, Federico A, Terracciano L, Fusco A. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer 2010; 46(8): 1438–1444
doi: 10.1016/j.ejca.2010.01.033 pmid:20185297
68 Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, Bianco M, Ferraro A, Sacchetti S, Troncone G, Fusco A, Tornillo L. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer 2010; 46(12): 2304–2313
doi: 10.1016/j.ejca.2010.05.011 pmid:20542683
69 Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U, Sepe R, Palma G, Troncone G, Scarfò M, Arra C, Fedele M, Fusco A. CBX7 is a tumor suppressor in mice and humans. J Clin Invest 2012; 122(2): 612–623
doi: 10.1172/JCI58620 pmid:22214847
70 Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1998; 1(7): 1057–1064
doi: 10.1016/S1097-2765(00)80106-9 pmid:9651589
71 Wilkinson FH, Park K, Atchison ML. Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci USA 2006; 103(51): 19296–19301
doi: 10.1073/pnas.0603564103 pmid:17158804
72 Notarbartolo M, Giannitrapani L, Vivona N, Poma P, Labbozzetta M, Florena A M, Porcasi R, Rosario Muggeo V M, Sandonato L, Cervello M, Montalto G, D’Alessandro N. Frequent alteration of the Yin Yang 1/Raf-1 kinase inhibitory protein ratio in hepatocellular carcinoma. OMICS: A Journal of Integrative Biology2011; 15(5): 267–272
doi: 10.1089/omi.2010.0096
73 Zhang S, Jiang T, Feng L, Sun J, Lu H, Wang Q, Pan M, Huang D, Wang X, Wang L, Jin H. Yin Yang-1 suppresses differentiation of hepatocellular carcinoma cells through the downregulation of CCAAT/enhancer-binding protein alpha. J Mol Med (Berl) 2012; 90(9): 1069–1077
doi: 10.1007/s00109-012-0879-y pmid:22391813
74 Zhang L, Cai X, Chen K, Wang Z, Wang L, Ren M, Huang A, Tang H. Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus Res 2011; 157(1): 76–81
doi: 10.1016/j.virusres.2011.02.009 pmid:21345358
75 García E, Marcos-Gutiérrez C, del Mar Lorente M, Moreno JC, Vidal M. RYBP, a new repressor protein that interacts with components of the mammalian polycomb complex, and with the transcription factor YY1. EMBO J 1999; 18(12): 3404–3418
doi: 10.1093/emboj/18.12.3404 pmid:10369680
76 Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 2012; 148(4): 664–678
doi: 10.1016/j.cell.2011.12.029 pmid:22325148
77 Chen D, Zhang J, Li M, Rayburn ER, Wang H, Zhang R. RYBP stabilizes p53 by modulating MDM2. EMBO Rep 2009; 10(2): 166–172
doi: 10.1038/embor.2008.231 pmid:19098711
78 Baylin SB, Jones PA. A decade of exploring the cancer epigenome- biological and translational implications. Nat Rev Cancer 2011; 11(10): 726–734
doi: 10.1038/nrc3130 pmid:21941284
79 Chiang PK, Cantoni GL. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem Pharmacol 1979; 28(12): 1897–1902
doi: 10.1016/0006-2952(79)90642-7 pmid:454462
80 Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21(9): 1050–1063
doi: 10.1101/gad.1524107 pmid:17437993
81 Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 2009; 8(6): 1579–1588
doi: 10.1158/1535-7163.MCT-09-0013 pmid:19509260
82 Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, Balusu R, Koul S, Atadja P, Marquez VE, Bhalla KN. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114(13): 2733–2743
doi: 10.1182/blood-2009-03-213496 pmid:19638619
83 Cheng LL, Itahana Y, Lei ZD, Chia NY, Wu Y, Yu Y, Zhang SL, Thike AA, Pandey A, Rozen S, Voorhoeve PM, Yu Q, Tan PH, Bay BH, Itahana K, Tan P. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep). Clin Cancer Res 2012 1;18(15): 4201–4212
doi: 10.1158/1078-0432.CCR-12-0036 pmid:22675170
84 Chiba T, Suzuki E, Negishi M, Saraya A, Miyagi S, Konuma T, Tanaka S, Tada M, Kanai F, Imazeki F, Iwama A, Yokosuka O. 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int J Cancer 2012; 130(11): 2557–2567
doi: 10.1002/ijc.26264 pmid:21717453
85 Chen Y, Lin MC, Yao H, Wang H, Zhang AQ, Yu J, Hui CK, Lau GK, He ML, Sung J, Kung HF. Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin. Hepatology 2007; 46(1): 200–208
doi: 10.1002/hep.21668 pmid:17596871
[1] Lingyu Gao, Qianjin Lu. The critical importance of epigenetics in autoimmune-related skin diseases[J]. Front. Med., 2023, 17(1): 43-57.
[2] Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, Xuejun Zhang. Characterization of chromatin accessibility in psoriasis[J]. Front. Med., 2022, 16(3): 483-495.
[3] Lei Lv, Qunying Lei. Proteins moonlighting in tumor metabolism and epigenetics[J]. Front. Med., 2021, 15(3): 383-403.
[4] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[5] Jiyu Tong, Richard A. Flavell, Hua-Bing Li. RNA m6A modification and its function in diseases[J]. Front. Med., 2018, 12(4): 481-489.
[6] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[7] Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy[J]. Front. Med., 2017, 11(3): 319-332.
[8] Daniel Wai-Hung Ho,Alan Ka-Lun Kai,Irene Oi-Lin Ng. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma[J]. Front. Med., 2015, 9(3): 322-330.
[9] Qingqing Xu, Xi Wu, Yuyu Xiong, Qinghe Xing, Lin He, Shengying Qin. Pharmacogenomics can improve antipsychotic treatment in schizophrenia[J]. Front Med, 2013, 7(2): 180-190.
[10] Xiao-Mei ZHANG, Ming-Zhou GUO, . The value of epigenetic markers in esophageal cancer[J]. Front. Med., 2010, 4(4): 378-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed