Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (3) : 367-377    https://doi.org/10.1007/s11684-013-0266-2
RESEARCH ARTICLE
A modified chronic ocular hypertension rat model for retinal ganglion cell neuroprotection
Lichun Zhong()
Ocular Science Department, Toxikon Corporation, Bedford, MA 01730, USA
 Download: PDF(421 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study aimed to modify a chronic ocular hypertension (OHT) rat model to screen for potential compounds to protect retinal ganglion cells (RGCs) from responding to increased intraocular pressure (IOP). A total of 266 rats were prepared and randomly grouped according to different time-points, namely, weeks 3, 8, 16, and 24. Rats were sedated and eye examination was performed to score as the corneal damage on a scale of 1 to 4. The OHT rat model was created via the injection of a hypertonic saline solution into the episcleral veins once weekly for two weeks. OHT was identified when the IOP at week 0 was≥6 mmHg than that at week -2 for the same eye. Viable RGCs were labeled by injecting 4% FluoroGold. Rats were sacrificed, and the eyes were enucleated and fixed. The fixed retinas were dissected to prepare flat whole-mounts. The viable RGCs were visualized and imaged. The IOP (meanβ±βSD) was calculated, and data were analyzed by the paired t-test and one-way ANOVA. The OHT model was created in 234 of 266 rats (87.97%), whereas 32 rats (12.03%) were removed from the study because of the absence of IOP elevation (11.28%) and/or corneal damage scores over 4 (0.75%). IOP was elevated by as much as 81.35% for 24 weeks. The average IOP was (16.68β±β0.98)βmmHg in non-OHT eyes (n = 234), but was (27.95±0.97)βmmHg in OHT eyes (n = 234). Viable RGCs in the OHT eyes were significantly decreased in a time-dependent manner by 29.41%, 38.24%, 55.32%, and 59.30% at weeks 3, 8, 16, and 24, respectively, as compared to viable RGCs in the non-OHT eyes (P<β0.05). The OHT model was successfully created in 88% of the rats. The IOP in the OHT eyes was elevated by approximately 81% for 24 weeks. The number of viable RGCs was decreased by 59% of the rats in a time-dependent manner. The modified OHT model may provide an effective and reliable method for screening drugs to protect RGCs from glaucoma.

Keywords chronic ocular hypertension      intraocular pressure      retinal ganglion cells      neuroprotection      glaucoma     
Corresponding Author(s): Zhong Lichun,Email:lichun.zhong@toxikon.com   
Issue Date: 05 September 2013
 Cite this article:   
Lichun Zhong. A modified chronic ocular hypertension rat model for retinal ganglion cell neuroprotection[J]. Front Med, 2013, 7(3): 367-377.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0266-2
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I3/367
IOP (mmHg) Rat strains/sex/agenTonometerSystemicanesthesiaReference
15.50±0.60Brown Norway, male retired breeder5GoldmannNo[25]
21.00±1.00Brown Norway17TonopenNo[26]
17.30±5.25Lewis115TonopenYes[27]
16.70±2.30Brown Norway132TonoLabNo[28]
25.10±0.50Brown Norway, adult14TonopenYes[29]
12.10±2.80Na?ve Brown Norway adult17TonopenYes[30]
28.10±0.50Na?ve Brown Norway adult20TonopenYes[31]
15.46±0.29Sprague-Dawley39TonopenYes[32]
15.00±0.00Sprague-Dawley, male adult12PerkinsYes[33]
16.10±1.10Wistar, adult25TonopenYes[34]
16.10±0.40Wistar, male25TonopenYes[35]
17.40±1.30Wistar, male32TonopenYes[36]
12.20±3.60Wistar, male9TonopenYes[37]
14.85±0.65Wistar, male6TonopenYes[38]
18.40±0.10Wistar, male132TonoLabNo[39]
18.40±0.10Wistar, female10PneumotonometerYes[40]
14.40±0.30Brown Norway, male10TonoLabNo[41]
19.00±0.50Brown Norway8TonoLabYes[42]
17.80±2.34Sprague-Dawley, male6TonopenNo[43]
16.30±1.20Brown4TonopenYes[44]
Tab.1  Summary of normal IOP (mean±SD) reported by different research groups
AnimalsCharacteristicsn%
OHT model creationTotal266100.00
UsedSubtotal (IOP≥6 mmHg)23487.97
Corneal damage score≤34920.94
OHT eyesNon-OHT eyesTemporary cataracts4271717.952.997.26
Body weight loss114.70
Body weight gain22395.30
UnusedSubtotal3212.03
IOP&lt;6 mmHg3011.28
Corneal damage score≥420.75
Tab.2  Details of animals in the study
IOP measurementnon-OHT eyeOHT eye
Individual single measurement5 to 28 (n = 11 050)18 to 46 (n = 6 370)
Animal average (mean±SD)13.75±4.27 to 18.35±4.39 (n = 234)25.53±4.04 to 32.00±8.49 (n = 234)
Tab.3  Range of IOP measurements (mmHg)
Fig.1  Comparison of the elevated IOP in the OHT eyes after the hypertonic saline injection and the normal IOP in the non-OHT eyes.
Fig.2  Comparison of manual and automatic RGC counts. (A) Correlation of manual and automatic counts. (B) Total RGCs counted by both methods.
Fig.3  Loss of RGCs on OHT and non-OHT animals. Micrographs of RGCs (A) show the time dependence of the number of viable RGCs (B) and the % loss of RGCs (C).
1 Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90(3): 262–267
doi: 10.1136/bjo.2005.081224 pmid:16488940
2 Mu?oz B, West SK. Blindness and visual impairment in the Americas and the Caribbean. Br J Ophthalmol 2002; 86(5): 498–504
doi: 10.1136/bjo.86.5.498 pmid:11973241
3 Shields BM, Ritch R, Krupin T. Classifications of the glaucomas. St. Louis: Mosby1996.
4 Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61(1): 33–44
doi: 10.1016/S0014-4835(95)80056-5 pmid:7556468
5 Reichstein D, Ren L, Filippopoulos T, Mittag T, Danias J. Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma. Exp Eye Res 2007; 84(1): 13–21
doi: 10.1016/j.exer.2006.08.009 pmid:17074320
6 Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36(5): 774–786
pmid:7706025
7 Sappington RM, Sidorova T, Long DJ, Calkins DJ. TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2009; 50(2): 717–728
doi: 10.1167/iovs.08-2321 pmid:18952924
8 Farkas RH, Grosskreutz CL. Apoptosis, neuroprotection, and retinal ganglion cell death: an overview. Int Ophthalmol Clin 2001; 41(1): 111–130
doi: 10.1097/00004397-200101000-00011 pmid:11198138
9 Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 2005; 18(3): 383–395, vi (vi.)
doi: 10.1016/j.ohc.2005.04.002 pmid:16054996
10 Levin LA. Neuroprotection and regeneration in glaucoma. Ophthalmol Clin North Am 2005; 18(4): 585–596, vii (vii.)
pmid:16314221
11 Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma- Is there a future role? Exp Eye Res 2010; 91(5): 554–566
doi: 10.1016/j.exer.2010.08.009 pmid:20800593
12 Danesh-Meyer HV. Neuroprotection in glaucoma: recent and future directions. Curr Opin Ophthalmol 2011; 22(2): 78–86
doi: 10.1097/ICU.0b013e32834372ec pmid:21252670
13 Link BA, Gray MP, Smith RS, John SW. Intraocular pressure in zebrafish: comparison of inbred strains and identification of a reduced melanin mutant with raised IOP. Invest Ophthalmol Vis Sci 2004; 45(12): 4415–4422
doi: 10.1167/iovs.04-0557 pmid:15557450
14 Sherpa T, Hunter SS, Frey RA, Robison BD, Stenkamp DL. Retinal proliferation response in the buphthalmic zebrafish, bugeye. Exp Eye Res 2011; 93(4): 424–436
doi: 10.1016/j.exer.2011.06.001 pmid:21723280
15 Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci 1980; 19(2): 126–136
pmid:6766124
16 Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 1980; 19(2): 137–152
pmid:6153173
17 Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 2002; 43(2): 402–410
pmid:11818384
18 Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 1989; 30(5): 897–907
pmid:2722446
19 Quigley HA, Hohman RM. Laser energy levels for trabecular meshwork damage in the primate eye. Invest Ophthalmol Vis Sci 1983; 24(9): 1305–1307
pmid:6885314
20 Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997; 64(1): 85–96
doi: 10.1006/exer.1996.0184 pmid:9093024
21 Danias J, Shen F, Kavalarakis M, Chen B, Goldblum D, Lee K, Zamora MF, Su Y, Brodie SE, Podos SM, Mittag T. Characterization of retinal damage in the episcleral vein cauterization rat glaucoma model. Exp Eye Res 2006; 82(2): 219–228
doi: 10.1016/j.exer.2005.06.013 pmid:16109406
22 Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2000; 41(11): 3451–3459
pmid:11006238
23 Nissirios N, Chanis R, Johnson E, Morrison J, Cepurna WO, Jia L, Mittag T, Danias J. Comparison of anterior segment structures in two rat glaucoma models: an ultrasound biomicroscopic study. Invest Ophthalmol Vis Sci 2008; 49(6): 2478–2482
doi: 10.1167/iovs.07-0965 pmid:18515586
24 Morrison JC, Fraunfelder FW, Milne ST, Moore CG. Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci 1995; 36(3): 751–756
pmid:7890506
25 Cohan BE, Bohr DF. Goldmann applanation tonometry in the conscious rat. Invest Ophthalmol Vis Sci 2001; 42(2): 340–342
pmid:11157864
26 Jia L, Cepurna WO, Johnson EC, Morrison JC. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci 2000; 41(6): 1380–1385
pmid:10798653
27 Mermoud A, Baerveldt G, Minckler DS, Lee MB, Rao NA. Intraocular pressure in Lewis rats. Invest Ophthalmol Vis Sci 1994; 35(5): 2455–2460
pmid:8163335
28 Morrison JC, Magann EF, Paulson KA, Chauhan SP, Berghella V, Siddiqui D. Evidence-based medicine guidelines in obstetrics/gynecology and trauma surgery. J Miss State Med Assoc 2009; 50(9): 302–305
pmid:20812442
29 Grozdanic SD, Betts DM, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res 2003; 77(1): 27–33
doi: 10.1016/S0014-4835(03)00089-7 pmid:12823985
30 Bui BV, Edmunds B, Cioffi GA, Fortune B. The gradient of retinal functional changes during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 2005; 46(1): 202–213
doi: 10.1167/iovs.04-0421 pmid:15623775
31 Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA. Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 2004; 45(6): 1854–1862
doi: 10.1167/iovs.03-1411 pmid:15161850
32 Nguyen CT, Bui BV, Sinclair AJ, Vingrys AJ. Dietary omega 3 fatty acids decrease intraocular pressure with age by increasing aqueous outflow. Invest Ophthalmol Vis Sci 2007; 48(2): 756–762
doi: 10.1167/iovs.06-0585 pmid:17251475
33 Wu Q, Zhang M, Song BW, Lu B, Hu P. Expression of ciliary neurotrophic factor after induction of ocular hypertension in the retina of rats. Chin Med J (Engl) 2007; 120(20): 1825–1829
pmid:18028780
34 Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, Baumrind L, Pease ME, Klein RL, Hauswirth WW. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44(10): 4357–4365
doi: 10.1167/iovs.02-1332 pmid:14507880
35 WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci 2001; 42(12): 2849–2855
pmid:11687528
36 Hains BC, Waxman SG. Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma. Invest Ophthalmol Vis Sci 2005; 46(11): 4164–4169
doi: 10.1167/iovs.05-0618 pmid:16249495
37 Robertson JV, Golesic E, Gauldie J, West-Mays JA. Ocular gene transfer of active TGF-beta induces changes in anterior segment morphology and elevated IOP in rats. Invest Ophthalmol Vis Sci 2010; 51(1): 308–318
doi: 10.1167/iovs.09-3380 pmid:19696167
38 Díaz F, Villena A, Vidal L, Moreno M, García-Campos J, Pérez de Vargas I. Experimental model of ocular hypertension in the rat: study of the optic nerve capillaries and action of hypotensive drugs. Invest Ophthalmol Vis Sci 2010; 51(2): 946–951
doi: 10.1167/iovs.09-3667 pmid:19797218
39 Wang WH, Millar JC, Pang IH, Wax MB, Clark AF. Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 2005; 46(12): 4617–4621
doi: 10.1167/iovs.05-0781 pmid:16303957
40 Ko ML, Hu DN, Ritch R, Sharma SC. The combined effect of brain-derived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest Ophthalmol Vis Sci 2000; 41(10): 2967–2971
pmid:10967052
41 Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 2012; 7(7): e40065
doi: 10.1371/journal.pone.0040065 pmid:22802951
42 Husain S, Abdul Y, Crosson CE. Preservation of retina ganglion cell function by morphine in a chronic ocular-hypertensive rat model. Invest Ophthalmol Vis Sci 2012; 53(7): 4289–4298
doi: 10.1167/iovs.12-9467 pmid:22661469
43 Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. Cell Death Dis 2012; 3(4): e290
doi: 10.1038/cddis.2012.26 pmid:22476098
44 Schallenberg M, Prokosch V, Thanos S. Regulation of retinal proteome by topical antiglaucomatous eye drops in an inherited glaucoma rat model. PLoS ONE 2012; 7(7): e33593
doi: 10.1371/journal.pone.0033593 pmid:22792152
45 Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE, Moss SE, Sillito AM, Fitzke FW. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci USA 2004; 101(36): 13352–13356
doi: 10.1073/pnas.0405479101 pmid:15340151
46 Guo LX, Zhang M, Teo EC. Influences of denucleation on contact force of facet joints under whole body vibration. Ergonomics 2007; 50(7): 967–978
doi: 10.1080/00140130701283943 pmid:17510817
47 Hackett RB. MeDonald TO. Ophthalmic Toxicology. Washington, D.C.: Taylor &amp; Francis1996
48 Zhong L, Bradley J, Schubert W, Ahmed E, Adamis AP, Shima DT, Robinson GS, Ng YS. Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci 2007; 48(3): 1212–1218
doi: 10.1167/iovs.06-0757 pmid:17325165
49 Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007; 171(1): 53–67
doi: 10.2353/ajpath.2007.061237 pmid:17591953
50 Morrison JC, Jia L, Cepurna W, Guo Y, Johnson E. Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats. Invest Ophthalmol Vis Sci 2009; 50(6): 2802–2808
doi: 10.1167/iovs.08-2465 pmid:19324849
51 Minton AZ, Phatak NR, Stankowska DL, He S, Ma HY, Mueller BH, Jiang M, Luedtke R, Yang S, Brownlee C, Krishnamoorthy RR. Endothelin B receptors contribute to retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE 2012; 7(8): e43199
doi: 10.1371/journal.pone.0043199 pmid:22916224
52 Guo L, Normando EM, Nizari S, Lara D, Cordeiro MF. Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. Invest Ophthalmol Vis Sci 2010; 51(12): 6504–6513
doi: 10.1167/iovs.10-5551 pmid:20688741
53 Linden R. Dendritic competition in the developing retina: ganglion cell density gradients and laterally displaced dendrites. Vis Neurosci 1993; 10(2): 313–324
doi: 10.1017/S0952523800003710 pmid:8485094
54 Fileta JB, Huang W, Kwon GP, Filippopoulos T, Ben Y, Dobberfuhl A, Grosskreutz CL. Efficient estimation of retinal ganglion cell number: a stereological approach. J Neurosci Methods 2008; 170(1): 1–8
doi: 10.1016/j.jneumeth.2007.12.008 pmid:18241929
55 Chang ZY, Lu DW, Yeh MK, Chiang CH. A novel high-content flow cytometric method for assessing the viability and damage of rat retinal ganglion cells. PLoS ONE 2012; 7(3): e33983
doi: 10.1371/journal.pone.0033983 pmid:22457807
56 Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Béjar JJ, Vidal-Sanz M, Agudo-Barriuso M. Whole number, distribution and co-expression of brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS ONE 2012; 7(11): e49830
doi: 10.1371/journal.pone.0049830 pmid:23166779
57 Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991; 32(3): 484–491
pmid:2001923
58 Pease ME, Zack DJ, Berlinicke C, Bloom K, Cone F, Wang Y, Klein RL, Hauswirth WW, Quigley HA. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 2009; 50(5): 2194–2200
doi: 10.1167/iovs.08-3013 pmid:19060281
59 Wang X, Li Y, He Y, Liang HS, Liu EZ. A novel animal model of partial optic nerve transection established using an optic nerve quantitative amputator. PLoS ONE 2012; 7(9): e44360
doi: 10.1371/journal.pone.0044360 pmid:22973439
60 Coassin M, Lambiase A, Sposato V, Micera A, Bonini S, Aloe L. Retinal p75 and bax overexpression is associated with retinal ganglion cells apoptosis in a rat model of glaucoma. Graefes Arch Clin Exp Ophthalmol 2008; 246(12): 1743–1749
doi: 10.1007/s00417-008-0913-5 pmid:18751719
61 Guo L, Moss SE, Alexander RA, Ali RR, Fitzke FW, Cordeiro MF. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest Ophthalmol Vis Sci 2005; 46(1): 175–182
doi: 10.1167/iovs.04-0832 pmid:15623771
62 Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44(5): 1982–1992
doi: 10.1167/iovs.02-0912 pmid:12714633
[1] Xiaohan Yang, Tiezheng Zheng, Hao Hong, Nan Cai, Xiaofeng Zhou, Changkai Sun, Liying Wu, Shuhong Liu, Yongqi Zhao, Lingling Zhu, Ming Fan, Xuezhong Zhou, Fengxie Jin. Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model[J]. Front. Med., 2018, 12(3): 307-318.
[2] LIU Ting, HE Xiangge. Meta-analysis of the diagnostic efficiency of frequency-doubling technology for primary glaucoma[J]. Front. Med., 2007, 1(1): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed