Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 411-417    https://doi.org/10.1007/s11684-013-0293-z
REVIEW
Telomeric impact of conventional chemotherapy
Yiming Lu1, Waiian Leong1, Olivier Guérin2,3, Eric Gilson2,4, Jing Ye1()
1. Ruijin Hospital Af?liated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2. Institut for Research on Cancer ??and Aging, Nice (IRCAN), Nice University, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France; 3. Geriatric Unit, Cimiez ?Hospital, CHU of Nice, France; 4. Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
 Download: PDF(220 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The increased level of chromosome instability in cancer cells, leading to aneuploidy and gross chromosomal rearrangements, is not only a driving force for oncogenesis but also can be the Achille’s heel of the disease since many chemotherapies (CT) kill cells by inducing a non-tolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplasic drugs. These results raise the interesting possibility that CT with genotoxic drugs preferentially target telomeres. In agreement with this view, accelerated shortening of telomere length has been described in blood lineage cells following high-dose CT (stem cell transplantation) or non-myeloablative CT. However, almost nothing is known on the consequences of this shortening in terms of telomere stability, senescence and on the development of second cancers or post-treatment aging-like syndromes in cancer survivors (cognitive defect, fertility impairment, etc.). In this article, we propose: (1) telomeres of cancer cells are preferential genomic targets of chemotherapies altering chromosome maintenance; (2) telomere functional parameters can be a surrogate marker of chemotherapy sensitivity and toxicity; (3) the use of anti-telomere molecule could greatly enhance the sensitivity to standards chemotherapies.

Keywords telomere      antineoplasic drugs      conventional chemotherapies     
Corresponding Author(s): Ye Jing,Email:yj11254@rjh.com.cn   
Issue Date: 05 December 2013
 Cite this article:   
Yiming Lu,Waiian Leong,Olivier Guérin, et al. Telomeric impact of conventional chemotherapy[J]. Front Med, 2013, 7(4): 411-417.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0293-z
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/411
Fig.1  The component and structure of telomeric nucleoprotein complex. A, telosome or shelterin complex; B, T-loop structure of telomere; C, telomerase extends telomere; D, G-quadraplex structure of telomere; E, TERRA.
Fig.2  Chemotherapeutic drugs targeting at telomeres.
1 Xue W, Zender L, Mithing C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445(7128): 656-660
doi: 10.1038/nature05529 pmid:17251933
2 Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436(7054): 1186-1190
doi: 10.1038/nature03884 pmid:15995699
3 Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8(3): 151-160
doi: 10.1038/nrclinonc.2010.223 pmid:21364688
4 Leonetti C, Scarsella M, Riggio G, Rizzo A, Salvati E, D’Incalci M, Staszewsky L, Frapolli R, Stevens MF, Stoppacciaro A, Mottolese M, Antoniani B, Gilson E, Zupi G, Biroccio A. G-quadruplex ligand RHPS4 potentiates the antitumor activity of camptothecins in preclinical models of solid tumors. Clin Cancer Res 2008; 14(22): 7284-7291
doi: 10.1158/1078-0432.CCR-08-0941 pmid:19010844
5 Biroccio A, Porru M, Rizzo A, Salvati E, D’Angelo C, Orlandi A, Passeri D, Franceschin M, Stevens MF, Gilson E, Beretta G, Zupi G, Pisano C, Zunino F, Leonetti C. DNA damage persistence as determinant of tumor sensitivity to the combination of Topo I inhibitors and telomere-targeting agents. Clin Cancer Res 2011; 17(8): 2227-2236
doi: 10.1158/1078-0432.CCR-10-3033 pmid:21355072
6 Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y, Biroccio A, Londo?o-Vallejo A, Giraud-Panis MJ, Gilson E. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142(2): 230-242
doi: 10.1016/j.cell.2010.05.032 pmid:20655466
7 Ourliac-Garnier I, Poulet A, Charif R, Amiard S, Magdinier F, Reza? K, Gilson E, Giraud-Panis MJ, Bombard S. Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15(5): 641-654
doi: 10.1007/s00775-010-0631-4 pmid:20191372
8 Lee KH, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR, DePinho RA. Telomere dysfunction alters the chemotherapeutic profile of transformed cells. Proc Natl Acad Sci USA 2001; 98(6): 3381-3386
doi: 10.1073/pnas.051629198 pmid:11248087
9 Snyder AR, Zhou J, Deng Z, Lieberman PM. Therapeutic doses of hydroxyurea cause telomere dysfunction and reduce TRF2 binding to telomeres. Cancer Biol Ther 2009; 8(12): 1136-1145
doi: 10.4161/cbt.8.12.8446 pmid:19363303
10 Hayashi MT, Cesare AJ, Fitzpatrick JA, Lazzerini-Denchi E, Karlseder J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 2012; 19(4): 387-394
doi: 10.1038/nsmb.2245 pmid:22407014
11 de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005; 19(18): 2100-2110
doi: 10.1101/gad.1346005 pmid:16166375
12 Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol 2008; 9(9): 232
doi: 10.1186/gb-2008-9-9-232 pmid:18828880
13 Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet 2007; 8(4): 299-309
doi: 10.1038/nrg2047 pmid:17363977
14 Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science 2001; 292(5524): 2075-2077
doi: 10.1126/science.1062329 pmid:11408657
15 Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, Brun C, Martins L, Sabatier L, Pulitzer JF, Gilson E. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002; 3(11): 1055-1061
doi: 10.1093/embo-reports/kvf215 pmid:12393752
16 Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798-801
doi: 10.1126/science.1147182 pmid:17916692
17 Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008; 10(2): 228-236
doi: 10.1038/ncb1685 pmid:18157120
18 Nergadze SG, Farnung BO, Wischnewski H, Khoriauli L, Vitelli V, Chawla R, Giulotto E, Azzalin CM. CpG-island promoters drive transcription of human telomeres. RNA 2009; 15(12): 2186-2194
doi: 10.1261/rna.1748309 pmid:19850908
19 Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T. Mammalian telomeres end in a large duplex loop (see comments). Cell 1999; 97(4): 503-514
doi: 10.1016/S0092-8674(00)80760-6 pmid:10338214
20 Amiard S, Doudeau M, Pinte S, Poulet A, Lenain C, Faivre-Moskalenko C, Angelov D, Hug N, Vindigni A, Bouvet P, Paoletti J, Gilson E, Giraud-Panis MJ. A topological mechanism for TRF2-enhanced strand invasion. Nat Struct Mol Biol 2007; 14(2): 147-154
doi: 10.1038/nsmb1192 pmid:17220898
21 Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 2009; 460(7251): 66-72
doi: 10.1038/nature08137 pmid:19571879
22 Martinez P, Thanasoula M, Carlos AR, Gómez-López G, Tejera AM, Schoeftner S, Dominguez O, Pisano DG, Tarsounas M, Blasco MA. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 2010; 12(8): 768-780
doi: 10.1038/ncb2081 pmid:20622869
23 Simonet T, Zaragosi LE, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res 2011; 21(7): 1028-1038
doi: 10.1038/cr.2011.40 pmid:21423270
24 Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, Songyang Z. Human telomeric proteins occupy selective interstitial sites. Cell Res 2011; 21(7): 1013-1027
doi: 10.1038/cr.2011.39 pmid:21423278
25 Brunori M, Luciano P, Gilson E, Géli V. The telomerase cycle: normal and pathological aspects. J Mol Med (Berl) 2005; 83(4): 244-257
doi: 10.1007/s00109-004-0616-2 pmid:15630594
26 Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 2001; 28(2): 155-159
doi: 10.1038/88871 pmid:11381263
27 Klapper W, Krams M, Qian W, Janssen D, Parwaresch R. Telomerase activity in B-cell non-Hodgkin lymphomas is regulated by hTERT transcription and correlated with telomere-binding protein expression but uncoupled from proliferation. Br J Cancer 2003; 89(4): 713-719
doi: 10.1038/sj.bjc.6601112 pmid:12915884
28 Nakanishi K, Kawai T, Kumaki F, Hiroi S, Mukai M, Ikeda E, Koering CE, Gilson E. Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 2003; 9(3): 1105-1111
pmid:12631614
29 Bellon M, Datta A, Brown M, Pouliquen JF, Couppie P, Kazanji M, Nicot C. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 2006; 119(9): 2090-2097
doi: 10.1002/ijc.22026 pmid:16786598
30 Biroccio A, Rizzo A, Elli R, Koering CE, Belleville A, Benassi B, Leonetti C, Stevens MF, D’Incalci M, Zupi G, Gilson E. TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells. Eur J Cancer 2006; 42(12): 1881-1888
pmid:16750909
31 Blanco R, Mu?oz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21(2): 206-220
doi: 10.1101/gad.406207 pmid:17234886
32 Biroccio A, Cherfils-Vicini J, Augereau A, Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L, Mendez-Bermudez A, Poncet D, Grataroli R, de Rodenbeeke CT, Salvati E, Rizzo A, Zizza P, Ricoul M, Cognet C, Kuilman T, Duret H, Lépinasse F, Marvel J, Verhoeyen E, Cosset FL, Peeper D, Smyth MJ, Londo?o-Vallejo A, Sabatier L, Picco V, Pages G, Scoazec JY, Stoppacciaro A, Leonetti C, Vivier E, Gilson E. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell Biol 2013; 15(7): 818-828
doi: 10.1038/ncb2774 pmid:23792691
33 Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, Sperduti I, Stevens MF, D’Incalci M, Blasco M, Chiorino G, Bauwens S, Horard B, Gilson E, Stoppacciaro A, Zupi G, Biroccio A. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 2007; 117(11): 3236-3247
doi: 10.1172/JCI32461 pmid:17932567
34 Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007; 8(10): 825-838
doi: 10.1038/nrm2259 pmid:17885666
35 Bao K, Cohen SN. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Proc Natl Acad Sci USA 2004; 101(40): 14361-14366
doi: 10.1073/pnas.0404386101 pmid:15353591
36 Bankhead T, Kobryn K, Chaconas G. Unexpected twist: harnessing the energy in positive supercoils to control telomere resolution. Mol Microbiol 2006; 62(3): 895-905
doi: 10.1111/j.1365-2958.2006.05423.x pmid:16999829
37 Germe T, Miller K, Cooper JP. A non-canonical function of topoisomerase II in disentangling dysfunctional telomeres. EMBO J 2009; 28(18): 2803-2811
doi: 10.1038/emboj.2009.223 pmid:19680223
38 Klapper W, Qian W, Schulte C, Parwaresch R. DNA damage transiently increases TRF2 mRNA expression and telomerase activity. Leukemia 2003; 17(10): 2007-2015
doi: 10.1038/sj.leu.2403086 pmid:14513051
39 Zhang YW, Zhang ZX, Miao ZH, Ding J. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine. Mol Pharmacol 2008; 73(3): 824-832
doi: 10.1124/mol.107.039081 pmid:18025071
40 Su CH, Chu WC, Lan KH, Li CP, Chao Y, Lin HC, Lee SD, Tsai YC, Lee WP. Gemcitabine causes telomere attrition by stabilizing TRF2. Eur J Cancer 2012; 48(18): 3465-3474
doi: 10.1016/j.ejca.2012.04.015 pmid:22704123
41 Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, d’Adda di Fagagna F. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012; 14(4): 355-365
doi: 10.1038/ncb2466 pmid:22426077
42 Schr?der CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG, de Vries EG. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer 2001; 84(10): 1348-1353
doi: 10.1054/bjoc.2001.1803 pmid:11355946
43 Rufer N, Brümmendorf TH, Chapuis B, Helg C, Lansdorp PM, Roosnek E. Accelerated telomere shortening in hematological lineages is limited to the first year following stem cell transplantation. Blood 2001; 97(2): 575-577
doi: 10.1182/blood.V97.2.575 pmid:11154240
44 Rocci A, Ricca I, Dellacasa C, Longoni P, Compagno M, Francese R, Lobetti Bodoni C, Manzini P, Caracciolo D, Boccadoro M, Ferrero D, Ladetto M, Carlo-Stella C, Tarella C. Long-term lymphoma survivors following high-dose chemotherapy and autograft: evidence of permanent telomere shortening in myeloid cells, associated with marked reduction of bone marrow hematopoietic stem cell reservoir. Exp Hematol 2007; 35(4): 673-681
doi: 10.1016/j.exphem.2006.12.006 pmid:17379077
45 Yoon SY, Sung HJ, Park KH, Choi IK, Kim SJ, Oh SC, Seo JH, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS. Telomere length shortening of peripheral blood mononuclear cells in solid-cancer patients undergoing standard-dose chemotherapy might be correlated with good treatment response and neutropenia severity. Acta Haematol 2007; 118(1): 30-37
doi: 10.1159/000101558 pmid:17429195
46 Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, Tarella C. The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol 2011; 39(12): 1171-1181
doi: 10.1016/j.exphem.2011.08.009 pmid:21864489
47 González-Suárez E, Samper E, Flores JM, Blasco MA. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 2000; 26(1): 114-117
doi: 10.1038/79089 pmid:10973262
48 Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 2007; 11(5): 461-469
doi: 10.1016/j.ccr.2007.02.026 pmid:17433785
49 Mauch PM, Kalish LA, Marcus KC, Coleman CN, Shulman LN, Krill E, Come S, Silver B, Canellos GP, Tarbell NJ. Second malignancies after treatment for laparotomy staged IA-IIIB Hodgkin’s disease: long-term analysis of risk factors and outcome. Blood 1996; 87(9): 3625-3632
pmid:8611686
50 M’kacher R, Bennaceur-Griscelli A, Girinsky T, Koscielny S, Delhommeau F, Dossou J, Violot D, Leclercq E, Courtier MH, Béron-Gaillard N, Assaf E, Ribrag V, Bourhis J, Feneux D, Bernheim A, Parmentier C, Carde P. Telomere shortening and associated chromosomal instability in peripheral blood lymphocytes of patients with Hodgkin’s lymphoma prior to any treatment are predictive of second cancers. Int J Radiat Oncol Biol Phys 2007; 68(2): 465-471
doi: 10.1016/j.ijrobp.2007.01.050 pmid:17418962
51 Smith RE. Risk for the development of treatment-related acute myelocytic leukemia and myelodysplastic syndrome among patients with breast cancer: review of the literature and the National Surgical Adjuvant Breast and Bowel Project experience. Clin Breast Cancer 2003; 4(4): 273-279
52 Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY) 2011; 3(8): 782-793
pmid:21869459
53 Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol 2012; 30(3): 274-281
doi: 10.1200/JCO.2011.36.8571 pmid:22184379
54 Quesnel C, Savard J, Ivers H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res Treat 2009; 116(1): 113-123
doi: 10.1007/s10549-008-0114-2 pmid:18629633
55 Zhang P, Pazin MJ, Schwartz CM, Becker KG, Wersto RP, Dilley CM, Mattson MP. Nontelomeric TRF2-REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr Biol 2008; 18(19): 1489-1494
doi: 10.1016/j.cub.2008.08.048 pmid:18818083
56 Poncet D, Belleville A, t’kint de Roodenbeke C, Roborel de Climens A, Ben Simon E, Merle-Beral H, Callet-Bauchu E, Salles G, Sabatier L, Delic J, Gilson E. Changes in the expression of telomere maintenance genes suggest global telomere dysfunction in B-chronic lymphocytic leukemia. Blood 2008; 111(4): 2388-2391
doi: 10.1182/blood-2007-09-111245 pmid:18077792
57 Augereau A, T’kint de Roodenbeke C, Simonet T, Bauwens S, Horard B, Callanan M, Leroux D, Jallades L, Salles G, Gilson E, Poncet D. Telomeric damage in early stage of chronic lymphocytic leukemia correlates with shelterin dysregulation. Blood 2011; 118(5): 1316-1322
doi: 10.1182/blood-2010-07-295774 pmid:21355086
[1] Xinsen Xu,Kai Qu,Qing Pang,Zhixin Wang,Yanyan Zhou,Chang Liu. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature[J]. Front. Med., 2016, 10(2): 191-203.
[2] Jiangbo Du,Wenjie Xue,Yong Ji,Xun Zhu,Yayun Gu,Meng Zhu,Cheng Wang,Yong Gao,Juncheng Dai,Hongxia Ma,Yue Jiang,Jiaping Chen,Zhibin Hu,Guangfu Jin,Hongbing Shen. U-shaped association between telomere length and esophageal squamous cell carcinoma risk: a case-control study in Chinese population[J]. Front. Med., 2015, 9(4): 478-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed