Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med Chin    2009, Vol. 3 Issue (1) : 61-66     DOI: 10.1007/s11684-009-0007-8
Influence of retinoic acid on TBX1 expression in myocardial cells induced by Shh and Fgf8
Miao LIU, Xiaoyan WU, Jiawei XU, Runming JIN()
Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
Download: PDF(177 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The aim of this study was to explore the regulatory mechanism of retinoic acid (RA) on the TBX1 gene expression in myocardial cells. Ventricular cardiocytes were isolated from neonatal rats and cultured, and then treated with different concentrations of retinoic acid. The expression of Shh and Fgf8 at mRNA and protein levels in neonatal rat myocardial cells were measured by using RT-PCR and Western blot technique, respectively. There was basal expression of Shh and Fgf8 in the control group. When treated with 3×10-7 mol/L RA, we observed that the expression of Shh mRNA and protein in neonatal rat myocardial cells were up-regulated by 1.51 (P<0.05) and 1.10 times (P<0.05), respectively. In comparison with the control group, under the concentration of 5×10-7 mol/L RA, they were up-regulated by 2.21 (P<0.05) and 2.38 times (P<0.05) individually. Meanwhile, we could detect that the expression of Fgf8 mRNA and protein were up-regulated by 2.50 times (P<0.05) and 80% (P<0.05) separately compared with the control group after stimulation of 3×10-7 mol/L RA, and they were up-regulated by 3.48 (P<0.05) and 2.04 times (P<0.05) individually after stimulation of 5×10-7 mol/L RA. The results indicated that RA could induce the expression of Shh and Fgf8 in neonatal rat myocardial cells. At the same time, it has shown that Shh and Fgf8 were involved in the regulation process of RA on TBX1 expression.

Keywords retinoic acid      Tbx1 protein      Shh protein      Fgf8 protein     
Corresponding Authors: JIN Runming,   
Issue Date: 05 March 2009
URL:     OR
geneprimer sequencetemperaturecycleslength/bp
all-actinS: GTG GGG CGC CCC AGG CAC CA55°C35548
Tab.1  The primer sequence and amplification conditions of genes
Fig.1  The cardiomyocytes in culture (× 200)
Fig.2  Purification of cardiomyocytes detected by FACS. M1 represents negative cells; M2 represents positive cells.
Fig.3  Expression of Shh and Fgf8 mRNA in cultured cardiomyocytes by RT-PCR. The relative level of Shh and Fgf8 were determined by quantification of RT-PCR bands and were normalized against the level of all-actin. M: marker; 1: Shh mRNA in cultured cells; 2: Shh mRNA in cultured cells added with 0.1% DMSO; 3: Shh mRNA in cultured cells added with 0.1% DMSO and 1 × 10mol/L RA; 4: Shh mRNA in cultured cells added with 0.1% DMSO and 3 × 10 mol/L RA; 5: Shh mRNA in cultured cells added with 0.1% DMSO and 5×10 mol/L RA; 6: Fgf8 mRNA in cultured cells; 7: Fgf8 mRNA in cultured cells added with 0.1% DMSO; 8: Fgf8 mRNA in cultured cells added with 0.1% DMSO and 1 × 10 mol/L RA; 9: Fgf8 mRNA in cultured cells added with 0.1% DMSO and 3 × 10 mol/L RA; 10: Fgf8 mRNA in cultured cells added with 0.1%DMSO and 5×10 mol/L RA. RA: retinoic acid; DMSO: dimethyl sulphoxide.
Fig.4  Expression of Shh and Fgf8 protein in cardiomyocytes by Western blot. The relative level of Shh and Fgf8 were determined by quantification of Western blot bands and were normalized against the level of GAPDH. M: marker; 1: cultured cells; 2: cultured cells added with 0.1% DMSO; 3: cultured cells added with 0.1% DMSO and 1 × 10 mol/L RA; 4: cultured cells added with 0.1% DMSO and 3 × 10 mol/L RA; 5: cultured cells added with 0.1% DMSO and 5 × 10 mol/L RA. RA: retinoic acid; DMSO: dimethyl sulphoxide.
1 Ben-Shachar S, Ou Z, Shaw C A, Belmont J W, Patel M S, Hummel M, Amato S, Tartaglia N, Berg J, Sutton V R, Lalani S R, Chinault A C, Cheung S W, Lupski J R, Patel A. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet , 2008, 82(1): 214–221
doi: 10.1016/j.ajhg.2007.09.014
2 Arnold J S, Braunstein E M, Ohyama T, Groves A K, Adams J C, Brown M C, Morrow B E. Tissue-specific roles of TBX1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet , 2006, 15(10): 1629–1639
doi: 10.1093/hmg/ddl084
3 Vermot J, Messaddeq N, Niederreither K, Dierich A, Dolle P. Rescue of morphogenetic defects and of retinoic acid signaling in retinaldehyde dehydrogenase 2 (Raldh2) mouse mutants by chimerism with wild-type cells. Differentiation , 2006, 74(9): 661–668
doi: 10.1111/j.1432-0436.2006.00094.x
4 Roberts C, Ivins S, Cook A C, Baldini A, Scambler P J. Cyp26 genes a1, b1 and c1 are down-regulated in TBX1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet , 2006, 15(23): 3394–3410
doi: 10.1093/hmg/ddl416
5 Metzqer D, Chambon P. Contribution of targeted conditional somatic mutagenesis to deciphering retinoid X receptor functions and to generating mouse models of human diseases. Handb Exp Pharmacol , 2007, 178(2): 511–524
doi: 10.1007/978-3-540-35109-2_21
6 Arnold J S, Werling U, Braunstein E M, Liao J, Nowotschin S, Edelmann W, Hebert J M, Morrow B E. Inactivation of TBX1 in the pharyngeal endoderm results in 22q11DS malformations. Development , 2006, 133(5): 977–987
doi: 10.1242/dev.02264
7 Xu H, Morishima M, Wylie J N, Schwartz R J, Bruneau B G, Lindsay E A, Baldini A. TBX1 has a dual role in the morphogenesis of the cardiac outflow tract. Development , 2004, 131(13): 3217–3227
doi: 10.1242/dev.01174
8 Zhang Z, Huvnh T, Baldini A. Mesodermal expression of TBX1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development , 2006, 133(18): 3587–3595
doi: 10.1242/dev.02539
9 Aggarwal V S, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanke A, Campione M, Morrow B E. Dissection of TBX1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet , 2006, 15(21): 3219–3228
doi: 10.1093/hmg/ddl399
10 Zhang L, Zhong T, Wang Y, Jiang Q, Song H, Gui Y. TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. Int J Dev Biol , 2006, 50(1): 55–61
doi: 10.1387/ijdb.052036lz
11 Yamagishi H, Maeda J, Hu T, Mcanally J, Conway S J, Kume T, Meyers E N, Yamagishi C, Srivastava D. TBX1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev , 2003, 17(2): 269–281
doi: 10.1101/gad.1048903
12 Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler P J. Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking TBX1. Dev Biol , 2005, 285(2): 554–569
doi: 10.1016/j.ydbio.2005.06.026
13 Moon A M, Guris D L, Seo J H, Li L, Hammond J, Talbot A, Imamoto A. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell , 2006, 10(1): 71–80
doi: 10.1016/j.devcel.2005.12.003
15 Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin J F, Baldini A, Lindsay E. TBX1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development , 2005, 132(23): 5307–5315
doi: 10.1242/dev.02086
16 Vitelli F, Taddei I, Morishima M, Meyers E N, Lindsay E A, Baldini A. A genetic link between TBX1 and fibroblast growth factor signaling. Development , 2002, 129(19): 4605–4611
17 Brown C B, Wenning J M, Lu M M, Epstein D J, Meyers E N, Epstein J A. Cre-mediated excision of Fgf8 in the TBX1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol , 2004, 267(1): 190–202
doi: 10.1016/j.ydbio.2003.10.024
18 Roberts C, Ivins S M, James C T, Scambler P J. Retinoic acid down-regulates TBX1 expression in vivo and in vitro. Dev Dyn , 2005, 232(4): 928–938
doi: 10.1002/dvdy.20268
19 Duester G. Retinoic acid regulation of the somitogenesis clock. Birth Defects Res C Embryo Today , 2007, 81(2): 84–92
doi: 10.1002/bdrc.20092
20 Wahl M B, Deng C, Lewandoski M, Pourquie O. Fgf signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development , 2007, 134(22): 4033–4041
doi: 10.1242/dev.009167
Full text