Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

   Online First

Administered by

Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland
Gang Lu, Yun Ling, Minghao Jiang, Yun Tan, Dong Wei, Lu Jiang, Shuting Yu, Fangying Jiang, Shuai Wang, Yao Dai, Jinzeng Wang, Geng Wu, Xinxin Zhang, Guoyu Meng, Shengyue Wang, Feng Liu, Xiaohong Fan, Saijuan Chen
Front. Med.    2023, 17 (4): 758-767.   https://doi.org/10.1007/s11684-022-0981-7
Abstract   HTML   PDF (2213KB)

With the recent ongoing autumn/winter 2022 COVID-19 wave and the adjustment of public health control measures, there have been widespread SARS-CoV-2 infections in Chinese mainland. Here we have analyzed 369 viral genomes from recently diagnosed COVID-19 patients in Shanghai, identifying a large number of sublineages of the SARS-CoV-2 Omicron family. Phylogenetic analysis, coupled with contact history tracing, revealed simultaneous community transmission of two Omicron sublineages dominating the infections in some areas of China (BA.5.2 mainly in Guangzhou and Shanghai, and BF.7 mainly in Beijing) and two highly infectious sublineages recently imported from abroad (XBB and BQ.1). Publicly available data from August 31 to November 29, 2022 indicated an overall severe/critical case rate of 0.035% nationwide, while analysis of 5706 symptomatic patients treated at the Shanghai Public Health Center between September 1 and December 26, 2022 showed that 20 cases (0.35%) without comorbidities progressed into severe/critical conditions and 153 cases (2.68%) with COVID-19-exacerbated comorbidities progressed into severe/critical conditions. These observations shall alert healthcare providers to place more resources for the treatment of severe/critical cases. Furthermore, mathematical modeling predicts this autumn/winter wave might pass through major cities in China by the end of the year, whereas some middle and western provinces and rural areas would be hit by the upcoming infection wave in mid-to-late January 2023, and the duration and magnitude of upcoming outbreak could be dramatically enhanced by the extensive travels during the Spring Festival (January 21, 2023). Altogether, these preliminary data highlight the needs to allocate resources to early diagnosis and effective treatment of severe cases and the protection of vulnerable population, especially in the rural areas, to ensure the country’s smooth exit from the ongoing pandemic and accelerate socio-economic recovery.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(21) WebOfScience(18)
Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai
Ziyu Fu, Dongguo Liang, Wei Zhang, Dongling Shi, Yuhua Ma, Dong Wei, Junxiang Xi, Sizhe Yang, Xiaoguang Xu, Di Tian, Zhaoqing Zhu, Mingquan Guo, Lu Jiang, Shuting Yu, Shuai Wang, Fangyin Jiang, Yun Ling, Shengyue Wang, Saijuan Chen, Feng Liu, Yun Tan, Xiaohong Fan
Front. Med.    2023, 17 (3): 562-575.   https://doi.org/10.1007/s11684-022-0977-3
Abstract   HTML   PDF (5819KB)

The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≥ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(8) WebOfScience(7)
A systematic survey of LU domain-containing proteins reveals a novel human gene, LY6A, which encodes the candidate ortholog of mouse Ly-6A/Sca-1 and is aberrantly expressed in pituitary tumors
Dan Liu, Chunhui Xu, Yanting Liu, Wen Ouyang, Shaojian Lin, Aining Xu, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Weili Zhao, Zhu Chen, Lan Wang, Saijuan Chen, Jinyan Huang, Zhe Bao Wu, Xiaojian Sun
Front. Med.    2023, 17 (3): 458-475.   https://doi.org/10.1007/s11684-022-0968-4
Abstract   HTML   PDF (11888KB)

The Ly-6 and uPAR (LU) domain-containing proteins represent a large family of cell-surface markers. In particular, mouse Ly-6A/Sca-1 is a widely used marker for various stem cells; however, its human ortholog is missing. In this study, based on a systematic survey and comparative genomic study of mouse and human LU domain-containing proteins, we identified a previously unannotated human gene encoding the candidate ortholog of mouse Ly-6A/Sca-1. This gene, hereby named LY6A, reversely overlaps with a lncRNA gene in the majority of exonic sequences. We found that LY6A is aberrantly expressed in pituitary tumors, but not in normal pituitary tissues, and may contribute to tumorigenesis. Similar to mouse Ly-6A/Sca-1, human LY6A is also upregulated by interferon, suggesting a conserved transcriptional regulatory mechanism between humans and mice. We cloned the full-length LY6A cDNA, whose encoded protein sequence, domain architecture, and exon‒intron structures are all well conserved with mouse Ly-6A/Sca-1. Ectopic expression of the LY6A protein in cells demonstrates that it acts the same as mouse Ly-6A/Sca-1 in their processing and glycosylphosphatidylinositol anchoring to the cell membrane. Collectively, these studies unveil a novel human gene encoding a candidate biomarker and provide an interesting model gene for studying gene regulatory and evolutionary mechanisms.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(1)
Venous thromboembolism in children with acute lymphoblastic leukemia in China: a report from the Chinese Children’s Cancer Group-ALL-2015
Mengmeng Yin, Hongsheng Wang, Xianmin Guan, Ju Gao, Minghua Yang, Ningling Wang, Tianfeng Liu, Jingyan Tang, Alex WK Leung, Fen Zhou, Xuedong Wu, Jie Huang, Hong Li, Shaoyan Hu, Xin Tian, Hua Jiang, Jiaoyang Cai, Xiaowen Zhai, Shuhong Shen, Qun Hu
Front. Med.    2023, 17 (3): 518-526.   https://doi.org/10.1007/s11684-022-0958-6
Abstract   HTML   PDF (576KB)

Venous thromboembolism (VTE) is a complication in children with acute lymphoblastic leukemia (ALL). The Chinese Children’s Cancer Group-ALL-2015 protocol was carried out in China, and epidemiology, clinical characteristics, and risk factors associated with VTE were analyzed. We collected data on VTE in a multi-institutional clinical study of 7640 patients with ALL diagnosed in 20 hospitals from January 2015 to December 2019. First, VTE occurred in 159 (2.08%) patients, including 90 (56.6%) during induction therapy and 108 (67.92%) in the upper extremities. T-ALL had a 1.74-fold increased risk of VTE (95% CI 1.08–2.8, P = 0.022). Septicemia, as an adverse event of ALL treatment, can significantly promote the occurrence of VTE (P < 0.001). Catheter-related thrombosis (CRT) accounted for 75.47% (n = 120); and, symptomatic VTE, 58.49% (n = 93), which was more common in patients aged 12–18 years (P = 0.023), non-CRT patients (P < 0.001), or patients with cerebral thrombosis (P < 0.001). Of the patients with VTE treated with anticoagulation therapy (n = 147), 4.08% (n = 6) had bleeding. The VTE recurrence rate was 5.03% (n = 8). Patients with VTE treated by non-ultrasound-guided venous cannulation (P = 0.02), with residual thrombus (P = 0.006), or with short anticoagulation period (P = 0.026) had high recurrence rates. Thus, preventing repeated venous puncture and appropriately prolonged anticoagulation time can reduce the risk of VTE recurrence.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
The nature of cancer
Min Yan, Quentin Liu
Front. Med.    2023, 17 (4): 796-803.   https://doi.org/10.1007/s11684-022-0975-5
Abstract   HTML   PDF (754KB)
Table and Figures | Reference | Related Articles | Metrics
Base editors: development and applications in biomedicine
Yanhui Liang, Fangbing Chen, Kepin Wang, Liangxue Lai
Front. Med.    2023, 17 (3): 359-387.   https://doi.org/10.1007/s11684-023-1013-y
Abstract   HTML   PDF (4341KB)

Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Distinct mononuclear diploid cardiac subpopulation with minimal cell–cell communications persists in embryonic and adult mammalian heart
Miaomiao Zhu, Huamin Liang, Zhe Zhang, Hao Jiang, Jingwen Pu, Xiaoyi Hang, Qian Zhou, Jiacheng Xiang, Ximiao He
Front. Med.    2023, 17 (5): 939-956.   https://doi.org/10.1007/s11684-023-0987-9
Abstract   HTML   PDF (5339KB)

A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
High frequency of alternative splicing variants of the oncogene Focal Adhesion Kinase in neuroendocrine tumors of the pancreas and breast
Dawei Xie, Zheng Wang, Beibei Sun, Liwei Qu, Musheng Zeng, Lin Feng, Mingzhou Guo, Guizhen Wang, Jihui Hao, Guangbiao Zhou
Front. Med.    2023, 17 (5): 907-923.   https://doi.org/10.1007/s11684-023-1009-7
Abstract   HTML   PDF (8522KB)

The characteristic genetic abnormality of neuroendocrine neoplasms (NENs), a heterogeneous group of tumors found in various organs, remains to be identified. Here, based on the analysis of the splicing variants of an oncogene Focal Adhesion Kinase (FAK) in The Cancer Genome Atlas datasets that contain 9193 patients of 33 cancer subtypes, we found that Box 6/Box 7-containing FAK variants (FAK6/7) were observed in 7 (87.5%) of 8 pancreatic neuroendocrine carcinomas and 20 (11.76%) of 170 pancreatic ductal adenocarcinomas (PDACs). We tested FAK variants in 157 tumor samples collected from Chinese patients with pancreatic tumors, and found that FAK6/7 was positive in 34 (75.6%) of 45 pancreatic NENs, 19 (47.5%) of 40 pancreatic solid pseudopapillary neoplasms, and 2 (2.9%) of 69 PDACs. We further tested FAK splicing variants in breast neuroendocrine carcinoma (BrNECs), and found that FAK6/7 was positive in 14 (93.3%) of 15 BrNECs but 0 in 23 non-NEC breast cancers. We explored the underlying mechanisms and found that a splicing factor serine/arginine repetitive matrix protein 4 (SRRM4) was overexpressed in FAK6/7-positive pancreatic tumors and breast tumors, which promoted the formation of FAK6/7 in cells. These results suggested that FAK6/7 could be a biomarker of NENs and represent a potential therapeutic target for these orphan diseases.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression
Tianzhuo Wang, Huiying Guo, Lei Zhang, Miao Yu, Qianchen Li, Jing Zhang, Yan Tang, Hongquan Zhang, Jun Zhan
Front. Med.    2023, 17 (4): 714-728.   https://doi.org/10.1007/s11684-022-0959-5
Abstract   HTML   PDF (5252KB)

FRMD6, a member of the 4.1 ezrin–radixin–moesin domain-containing protein family, has been reported to inhibit tumor progression in multiple cancers. Here, we demonstrate the involvement of FRMD6 in lung cancer progression. We find that FRMD6 is overexpressed in lung cancer tissues relative to in normal lung tissues. In addition, the enhanced expression of FRMD6 is associated with poor outcomes in patients with lung squamous cell carcinoma (n = 75, P = 0.0054) and lung adenocarcinoma (n = 94, P = 0.0330). Cell migration and proliferation in vitro and tumor formation in vivo are promoted by FRMD6 but are suppressed by the depletion of FRMD6. Mechanistically, FRMD6 interacts and colocalizes with mTOR and S6K, which are the key molecules of the mTOR signaling pathway. FRMD6 markedly enhances the interaction between mTOR and S6K, subsequently increasing the levels of endogenous pS6K and downstream pS6 in lung cancer cells. Furthermore, knocking out FRMD6 inhibits the activation of the mTOR signaling pathway in Frmd6−/− gene KO MEFs and mice. Altogether, our results show that FRMD6 contributes to lung cancer progression by activating the mTOR signaling pathway.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(3) WebOfScience(2)
ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification
Wenle Ye, Jinghan Wang, Jiansong Huang, Xiao He, Zhixin Ma, Xia Li, Xin Huang, Fenglin Li, Shujuan Huang, Jiajia Pan, Jingrui Jin, Qing Ling, Yungui Wang, Yongping Yu, Jie Sun, Jie Jin
Front. Med.    2023, 17 (4): 685-698.   https://doi.org/10.1007/s11684-022-0942-1
Abstract   HTML   PDF (5457KB)

Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(1)
A new perspective in pyroptosis: lifting the veil on GSDMA activation
Pian Yu, Xiang Chen, Cong Peng
Front. Med.    2023, 17 (3): 581-583.   https://doi.org/10.1007/s11684-022-0971-9
Abstract   HTML   PDF (797KB)
Table and Figures | Reference | Related Articles | Metrics
Cited: WebOfScience(2)
Hyperosmolarity promotes macrophage pyroptosis by driving the glycolytic reprogramming of corneal epithelial cells in dry eye disease
Yu Han, Yu Zhang, Kelan Yuan, Yaying Wu, Xiuming Jin, Xiaodan Huang
Front. Med.    2023, 17 (4): 781-795.   https://doi.org/10.1007/s11684-023-0986-x
Abstract   HTML   PDF (6388KB)

Tear film hyperosmolarity plays a core role in the development of dry eye disease (DED) by mediating the disruption of ocular surface homeostasis and triggering inflammation in ocular surface epithelium. In this study, the mechanisms involving the hyperosmolar microenvironment, glycolysis mediating metabolic reprogramming, and pyroptosis were explored clinically, in vitro, and in vivo. Data from DED clinical samples indicated that the expression of glycolysis and pyroptosis-related genes, including PKM2 and GSDMD, was significantly upregulated and that the secretion of IL-1β significantly increased. In vitro, the indirect coculture of macrophages derived from THP-1 and human corneal epithelial cells (HCECs) was used to discuss the interaction among cells. The hyperosmolar environment was found to greatly induce HCECs’ metabolic reprogramming, which may be the primary cause of the subsequent inflammation in macrophages upon the activation of the related gene and protein expression. 2-Deoxy-d-glucose (2-DG) could inhibit the glycolysis of HCECs and subsequently suppress the pyroptosis of macrophages. In vivo, 2-DG showed potential efficacy in relieving DED activity and could significantly reduce the overexpression of genes and proteins related to glycolysis and pyroptosis. In summary, our findings suggested that hyperosmolar-induced glycolytic reprogramming played an active role in promoting DED inflammation by mediating pyroptosis.

Table and Figures | Reference | Related Articles | Metrics
Immunometabolism: a new dimension in immunotherapy resistance
Chaoyue Xiao, Wei Xiong, Yiting Xu, Ji’an Zou, Yue Zeng, Junqi Liu, Yurong Peng, Chunhong Hu, Fang Wu
Front. Med.    2023, 17 (4): 585-616.   https://doi.org/10.1007/s11684-023-1012-z
Abstract   HTML   PDF (2270KB)

Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.

Table and Figures | Reference | Related Articles | Metrics
Discovery of the mechanisms of acupuncture in the treatment of migraine based on functional magnetic resonance imaging and omics
Chong Li, Xinyi Li, Ke He, Yang Wu, Xiaoming Xie, Jiju Yang, Fan Zhang, Yang Yue, Huifeng Hao, Shaokun Zhao, Xin Li, Guihua Tian
Front. Med.    2023, 17 (5): 993-1005.   https://doi.org/10.1007/s11684-023-0989-7
Abstract   HTML   PDF (3403KB)

Migraine is one of the most prevalent and disabling neurological disease, but the current pharmacotherapies show limited efficacy and often accompanied by adverse effects. Acupuncture is a promising complementary therapy, but further clinical evidence is needed. The influence of acupuncture on migraine is not an immediate effect, and its mechanism remains unclear. This study aims to provide further clinical evidence for the anti-migraine effects of acupuncture and explore the mechanism involved. A randomized controlled trial was performed among 10 normal controls and 38 migraineurs. The migraineurs were divided into blank control, sham acupuncture, and acupuncture groups. Patients were subjected to two courses of treatment, and each treatment lasted for 5 days, with an interval of 1 day between the two courses. The effectiveness of treatment was evaluated using pain questionnaire. The functional magnetic resonance imaging (fMRI) data were analyzed for investigating brain changes induced by treatments. Blood plasma was collected for metabolomics and proteomics studies. Correlation and mediation analyses were performed to investigate the interaction between clinical, fMRI and omics changes. Results showed that acupuncture effectively relieved migraine symptoms in a way different from sham acupuncture in terms of curative effect, affected brain regions, and signaling pathways. The anti-migraine mechanism involves a complex network related to the regulation of the response to hypoxic stress, reversal of brain energy imbalance, and regulation of inflammation. The brain regions of migraineurs affected by acupuncture include the lingual gyrus, default mode network, and cerebellum. The effect of acupuncture on patients’ metabolites/proteins may precede that of the brain.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(1)
Potential unreliability of ALK variant allele frequency in the efficacy prediction of targeted therapy in NSCLC
Wei Rao, Yutao Liu, Yan Li, Lei Guo, Tian Qiu, Lin Dong, Jianming Ying, Weihua Li
Front. Med.    2023, 17 (3): 493-502.   https://doi.org/10.1007/s11684-022-0946-x
Abstract   HTML   PDF (3444KB)

Anaplastic lymphoma kinase (ALK) is the most common fusion gene involved in non-small cell lung cancer (NSCLC), and remarkable response has been achieved with the use of ALK tyrosine kinase inhibitors (ALK-TKIs). However, the clinical efficacy is highly variable. Pre-existing intratumoral heterogeneity (ITH) has been proven to contribute to the poor treatment response and the resistance to targeted therapies. In this work, we investigated whether the variant allele frequencies (VAFs) of ALK fusions can help assess ITH and predict targeted therapy efficacy. Through the application of next-generation sequencing (NGS), 7.2% (326/4548) of patients were detected to be ALK positive. On the basis of the adjusted VAF (adjVAF, VAF normalization for tumor purity) of four different threshold values (adjVAF < 50%, 40%, 30%, or 20%), the association of ALK subclonality with crizotinib efficacy was assessed. Nonetheless, no statistical association was observed between median progression-free survival (PFS) and ALK subclonality assessed by adjVAF, and a poor correlation of adjVAF with PFS was found among the 85 patients who received first-line crizotinib. Results suggest that the ALK VAF determined by hybrid capture-based NGS is probably unreliable for ITH assessment and targeted therapy efficacy prediction in NSCLC.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF
Miyesaier Abudureyimu, Mingjie Yang, Xiang Wang, Xuanming Luo, Junbo Ge, Hu Peng, Yingmei Zhang, Jun Ren
Front. Med.    2023, 17 (6): 1219-1235.   https://doi.org/10.1007/s11684-023-0983-0
Abstract   HTML   PDF (6742KB)

Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(4) WebOfScience(2)
Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2
Mingyue Tan, Qi Pan, Qi Wu, Jianfa Li, Jun Wang
Front. Med.    2023, 17 (3): 503-517.   https://doi.org/10.1007/s11684-022-0947-9
Abstract   HTML   PDF (3698KB)

Aldolase B (ALDOB), a glycolytic enzyme, is uniformly depleted in clear cell renal cell carcinoma (ccRCC) tissues. We previously showed that ALDOB inhibited proliferation through a mechanism independent of its enzymatic activity in ccRCC, but the mechanism was not unequivocally identified. We showed that the corepressor C-terminal-binding protein 2 (CtBP2) is a novel ALDOB-interacting protein in ccRCC. The CtBP2-to-ALDOB expression ratio in clinical samples was correlated with the expression of CtBP2 target genes and was associated with shorter survival. ALDOB inhibited CtBP2-mediated repression of multiple cell cycle inhibitor, proapoptotic, and epithelial marker genes. Furthermore, ALDOB overexpression decreased the proliferation and migration of ccRCC cells in an ALDOB-CtBP2 interaction-dependent manner. Mechanistically, our findings showed that ALDOB recruited acireductone dioxygenase 1, which catalyzes the synthesis of an endogenous inhibitor of CtBP2, 4-methylthio 2-oxobutyric acid. ALDOB functions as a scaffold to bring acireductone dioxygenase and CtBP2 in close proximity to potentiate acireductone dioxygenase-mediated inhibition of CtBP2, and this scaffolding effect was independent of ALDOB enzymatic activity. Moreover, increased ALDOB expression inhibited tumor growth in a xenograft model and decreased lung metastasis in vivo. Our findings reveal that ALDOB is a negative regulator of CtBP2 and inhibits tumor growth and metastasis in ccRCC.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis
Zhiqian Bi, Jia Chen, Xiaoyao Chang, Dangran Li, Yingying Yao, Fangfang Cai, Huangru Xu, Jian Cheng, Zichun Hua, Hongqin Zhuang
Front. Med.    2023, 17 (5): 972-992.   https://doi.org/10.1007/s11684-023-0990-1
Abstract   HTML   PDF (7502KB)

Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1)
Neutralization against SARS-CoV-2 Delta/Omicron variants and B cell response after inactivated vaccination among COVID-19 convalescents
Hao Wang, Yu Yuan, Bihao Wu, Mingzhong Xiao, Zhen Wang, Tingyue Diao, Rui Zeng, Li Chen, Yanshou Lei, Pinpin Long, Yi Guo, Xuefeng Lai, Yuying Wen, Wenhui Li, Hao Cai, Lulu Song, Wei Ni, Youyun Zhao, Kani Ouyang, Jingzhi Wang, Qi Wang, Li Liu, Chaolong Wang, An Pan, Xiaodong Li, Rui Gong, Tangchun Wu
Front. Med.    2023, 17 (4): 747-757.   https://doi.org/10.1007/s11684-022-0954-x
Abstract   HTML   PDF (3286KB)

Emerging SARS-CoV-2 variants have made COVID-19 convalescents susceptible to re-infection and have raised concern about the efficacy of inactivated vaccination in neutralization against emerging variants and antigen-specific B cell response. To this end, a study on a long-term cohort of 208 participants who have recovered from COVID-19 was conducted, and the participants were followed up at 3.3 (Visit 1), 9.2 (Visit 2), and 18.5 (Visit 3) months after SARS-CoV-2 infection. They were classified into three groups (no-vaccination (n = 54), one-dose (n = 62), and two-dose (n = 92) groups) on the basis of the administration of inactivated vaccination. The neutralizing antibody (NAb) titers against the wild-type virus continued to decrease in the no-vaccination group, but they rose significantly in the one-dose and two-dose groups, with the highest NAb titers being observed in the two-dose group at Visit 3. The NAb titers against the Delta variant for the no-vaccination, one-dose, and two-dose groups decreased by 3.3, 1.9, and 2.3 folds relative to the wild-type virus, respectively, and those against the Omicron variant decreased by 7.0, 4.0, and 3.8 folds, respectively. Similarly, the responses of SARS-CoV-2 RBD-specific B cells and memory B cells were boosted by the second vaccine dose. Results showed that the convalescents benefited from the administration of the inactivated vaccine (one or two doses), which enhanced neutralization against highly mutated SARS-CoV-2 variants and memory B cell responses. Two doses of inactivated vaccine among COVID-19 convalescents are therefore recommended for the prevention of the COVID-19 pandemic, and vaccination guidelines and policies need to be updated.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
The development and benefits of metformin in various diseases
Ying Dong, Yingbei Qi, Haowen Jiang, Tian Mi, Yunkai Zhang, Chang Peng, Wanchen Li, Yongmei Zhang, Yubo Zhou, Yi Zang, Jia Li
Front. Med.    2023, 17 (3): 388-431.   https://doi.org/10.1007/s11684-023-0998-6
Abstract   HTML   PDF (2917KB)

Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(1)
Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro
Fen Zhang, Lanlan Xiao, Ya Yang, Menghao Zhou, Yalei Zhao, Zhongyang Xie, Xiaoxi Ouyang, Feiyang Ji, Shima Tang, Lanjuan Li
Front. Med.    2023, 17 (3): 534-548.   https://doi.org/10.1007/s11684-022-0953-y
Abstract   HTML   PDF (9892KB)

Autoimmune hepatitis (AIH) is a severe globally distributed liver disease that could occur at any age. Human menstrual blood-derived stem cells (MenSCs) have shown therapeutic effect in acute lung injury and liver failure. However, their role in the curative effect of AIH remains unclear. Here, a classic AIH mouse model was constructed through intravenous injection with concanavalin A (Con A). MenSCs were intravenously injected while Con A injection in the treatment groups. The results showed that the mortality by Con A injection was significantly decreased by MenSCs treatment and liver function tests and histological analysis were also ameliorated. The results of phosphoproteomic analysis and RNA-seq revealed that MenSCs improved AIH, mainly by apoptosis and c-Jun N-terminal kinase/mitogen-activated protein signaling pathways. Apoptosis analysis demonstrated that the protein expression of cleaved caspase 3 was increased by Con A injection and reduced by MenSCs transplantation, consistent with the TUNEL staining results. An AML12 co-culture system and JNK inhibitor (SP600125) were used to verify the JNK/MAPK and apoptosis signaling pathways. These findings suggested that MenSCs could be a promising strategy for AIH.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: WebOfScience(2)
Immunosuppressive tumor microenvironment contributes to tumor progression in diffuse large B-cell lymphoma upon anti-CD19 chimeric antigen receptor T therapy
Zixun Yan, Li Li, Di Fu, Wen Wu, Niu Qiao, Yaohui Huang, Lu Jiang, Depei Wu, Yu Hu, Huilai Zhang, Pengpeng Xu, Shu Cheng, Li Wang, Sahin Lacin, Muharrem Muftuoglu, Weili Zhao
Front. Med.    2023, 17 (4): 699-713.   https://doi.org/10.1007/s11684-022-0972-8
Abstract   HTML   PDF (7289KB)

Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy has achieved 40%–50% long-term complete response in relapsed or refractory diffuse large B-cell lymphoma (DLBCL) patients. However, the underlying mechanism of alterations in the tumor microenvironments resulting in CAR-T cell therapy failure needs further investigation. A multi-center phase I/II trial of anti-CD19 CD28z CAR-T (FKC876, ChiCTR1800019661) was conducted. Among 22 evaluable DLBCL patients, seven achieved complete remission, 10 experienced partial remissions, while four had stable disease by day 29. Single-cell RNA sequencing results were obtained from core needle biopsy tumor samples collected from long-term complete remission and early-progressed patients, and compared at different stages of treatment. M2-subtype macrophages were significantly involved in both in vivo and in vitro anti-tumor functions of CAR-T cells, leading to CAR-T cell therapy failure and disease progression in DLBCL. Immunosuppressive tumor microenvironments persisted before CAR-T cell therapy, during both cell expansion and disease progression, which could not be altered by infiltrating CAR-T cells. Aberrant metabolism profile of M2-subtype macrophages and those of dysfunctional T cells also contributed to the immunosuppressive tumor microenvironments. Thus, our findings provided a clinical rationale for targeting tumor microenvironments and reprogramming immune cell metabolism as effective therapeutic strategies to prevent lymphoma relapse in future designs of CAR-T cell therapy.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(5) WebOfScience(6)
Liver cell therapies: cellular sources and grafting strategies
Wencheng Zhang, Yangyang Cui, Yuan Du, Yong Yang, Ting Fang, Fengfeng Lu, Weixia Kong, Canjun Xiao, Jun Shi, Lola M. Reid, Zhiying He
Front. Med.    2023, 17 (3): 432-457.   https://doi.org/10.1007/s11684-023-1002-1
Abstract   HTML   PDF (3463KB)

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver’s cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1)
5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I
Chengdong Wu, Dekai Liu, Lufei Zhang, Jingjie Wang, Yuan Ding, Zhongquan Sun, Weilin Wang
Front. Med.    2023, 17 (3): 476-492.   https://doi.org/10.1007/s11684-022-0966-6
Abstract   HTML   PDF (8131KB)

tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5′-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5′-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5′-tiRNA-Gln knockdown yielded opposite results. 5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5′-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5′-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5′-tiRNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(5) WebOfScience(4)
Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice
Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, Yueqiu Tan, Jie Qing, Hong Luo
Front. Med.    2023, 17 (5): 957-971.   https://doi.org/10.1007/s11684-023-0988-8
Abstract   HTML   PDF (7107KB)

Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Dihydroartemisinin increased the abundance of Akkermansia muciniphila by YAP1 depression that sensitizes hepatocellular carcinoma to anti-PD-1 immunotherapy
Zhiqin Zhang, Xinli Shi, Jingmin Ji, Yinglin Guo, Qing Peng, Liyuan Hao, Yu Xue, Yiwei Liu, Caige Li, Junlan Lu, Kun Yu
Front. Med.    2023, 17 (4): 729-746.   https://doi.org/10.1007/s11684-022-0978-2
Abstract   HTML   PDF (13410KB)

The effect of anti-programmed cell death 1 (anti-PD-1) immunotherapy is limited in patients with hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP1) expression increased in liver tumor cells in early HCC, and Akkermansia muciniphila abundance decreased in the colon. The response to anti-PD-1 treatment is associated with A. muciniphila abundance in many tumors. However, the interaction between A. muciniphila abundance and YAP1 expression remains unclear in HCC. Here, anti-PD-1 treatment decreased A. muciniphila abundance in the colon, but increased YAP1 expression in the tumor cells by mice with liver tumors in situ. Mechanistically, hepatocyte-specific Yap1 knockout (Yap1LKO) maintained bile acid homeostasis in the liver, resulting in an increased abundance of A. muciniphila in the colon. Yap1 knockout enhanced anti-PD-1 efficacy. Therefore, YAP1 inhibition is a potential target for increasing A. muciniphila abundance to promote anti-PD-1 efficacy in liver tumors. Dihydroartemisinin (DHA), acting as YAP1 inhibitor, increased A. muciniphila abundance to sensitize anti-PD-1 therapy. A. muciniphila by gavage increased the number and activation of CD8+ T cells in liver tumor niches during DHA treatment or combination with anti-PD-1. Our findings suggested that the combination anti-PD-1 with DHA is an effective strategy for liver tumor treatment.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)
Evaluation of ICUs and weight of quality control indicators: an exploratory study based on Chinese ICU quality data from 2015 to 2020
Longxiang Su, Xudong Ma, Sifa Gao, Zhi Yin, Yujie Chen, Wenhu Wang, Huaiwu He, Wei Du, Yaoda Hu, Dandan Ma, Feng Zhang, Wen Zhu, Xiaoyang Meng, Guoqiang Sun, Lian Ma, Huizhen Jiang, Guangliang Shan, Dawei Liu, Xiang Zhou, on behalf of China-NCCQC
Front. Med.    2023, 17 (4): 675-684.   https://doi.org/10.1007/s11684-022-0970-x
Abstract   HTML   PDF (1221KB)

This study aimed to explore key quality control factors that affected the prognosis of intensive care unit (ICU) patients in Chinese mainland over six years (2015−2020). The data for this study were from 31 provincial and municipal hospitals (3425 hospital ICUs) and included 2 110 685 ICU patients, for a total of 27 607 376 ICU hospitalization days. We found that 15 initially established quality control indicators were good predictors of patient prognosis, including percentage of ICU patients out of all inpatients (%), percentage of ICU bed occupancy of total inpatient bed occupancy (%), percentage of all ICU inpatients with an APACHE II score ≥15 (%), three-hour (surviving sepsis campaign) SSC bundle compliance (%), six-hour SSC bundle compliance (%), rate of microbe detection before antibiotics (%), percentage of drug deep venous thrombosis (DVT) prophylaxis (%), percentage of unplanned endotracheal extubations (%), percentage of patients reintubated within 48 hours (%), unplanned transfers to the ICU (%), 48-h ICU readmission rate (%), ventilator associated pneumonia (VAP) (per 1000 ventilator days), catheter related blood stream infection (CRBSI) (per 1000 catheter days), catheter-associated urinary tract infections (CAUTI) (per 1000 catheter days), in-hospital mortality (%). When exploratory factor analysis was applied, the 15 indicators were divided into 6 core elements that varied in weight regarding quality evaluation: nosocomial infection management (21.35%), compliance with the Surviving Sepsis Campaign guidelines (17.97%), ICU resources (17.46%), airway management (15.53%), prevention of deep-vein thrombosis (14.07%), and severity of patient condition (13.61%). Based on the different weights of the core elements associated with the 15 indicators, we developed an integrated quality scoring system defined as F score=21.35%×nosocomial infection management + 17.97%×compliance with SSC guidelines + 17.46%×ICU resources + 15.53%×airway management + 14.07%×DVT prevention + 13.61%×severity of patient condition. This evidence-based quality scoring system will help in assessing the key elements of quality management and establish a foundation for further optimization of the quality control indicator system.

Table and Figures | Reference | Related Articles | Metrics
Cited: Crossref(1) WebOfScience(1)
Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients
Xianggui Yuan, Teng Yu, Jianzhi Zhao, Huawei Jiang, Yuanyuan Hao, Wen Lei, Yun Liang, Baizhou Li, Wenbin Qian
Front. Med.    2023, 17 (5): 889-906.   https://doi.org/10.1007/s11684-023-0994-x
Abstract   HTML   PDF (8853KB)

Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin’s lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ≥ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
The clinical impact of tricuspid regurgitation in patients with a biatrial orthotopic heart transplant
Kevin M. Veen, Grigorios Papageorgiou, Casper F. Zijderhand, Mostafa M. Mokhles, Jasper J. Brugts, Olivier C. Manintveld, Alina A. Constantinescu, Jos A. Bekkers, Johanna J.M. Takkenberg, Ad J.J.C. Bogers, Kadir Caliskan
Front. Med.    2023, 17 (3): 527-533.   https://doi.org/10.1007/s11684-022-0967-5
Abstract   HTML   PDF (1169KB)

In this study, we aim to elucidate the clinical impact and long-term course of tricuspid regurgitation (TR), taking into account its dynamic nature, after biatrial orthotopic heart transplant (OHT). All consecutive adult patients undergoing biatrial OHT (1984−2017) with an available follow-up echocardiogram were included. Mixed-models were used to model the evolution of TR. The mixed-model was inserted into a Cox model in order to address the association of the dynamic TR with mortality. In total, 572 patients were included (median age: 50 years, males: 74.9%). Approximately 32% of patients had moderate-to-severe TR immediately after surgery. However, this declined to 11% on 5 years and 9% on 10 years after surgery, adjusted for survival bias. Pre-implant mechanical support was associated with less TR during follow-up, whereas concurrent LV dysfunction was significantly associated with more TR during follow-up. Survival at 1, 5, 10, 20 years was 97% ± 1%, 88% ± 1%, 66% ± 2% and 23% ± 2%, respectively. The presence of moderate-to-severe TR during follow-up was associated with higher mortality (HR: 1.07, 95% CI (1.02–1.12), p = 0.006). The course of TR was positively correlated with the course of creatinine (R = 0.45). TR during follow-up is significantly associated with higher mortality and worse renal function. Nevertheless, probability of TR is the highest immediately after OHT and decreases thereafter. Therefore, it may be reasonable to refrain from surgical intervention for TR during earlier phase after OHT.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Cited: Crossref(2) WebOfScience(2)