Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

   Online First

Administered by

Online First
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
Identification of an E3 ligase-encoding gene RFWD3 in non-small cell lung cancer
Yanfei Zhang, Xinchun Zhao, Yongchun Zhou, Min Wang, Guangbiao Zhou
Front. Med.    https://doi.org/10.1007/s11684-019-0708-6
Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome
Qiqi Zhao, Xin Gao, Guangli Yan, Aihua Zhang, Hui Sun, Ying Han, Wenxiu Li, Liang Liu, Xijun Wang
Front. Med.    https://doi.org/10.1007/s11684-019-0705-9
Acetylated HOXB9 at lysine 27 is of differential diagnostic value in patients with pancreatic ductal adenocarcinoma
Xiaoran Sun, Jiagui Song, Jing Zhang, Jun Zhan, Weigang Fang, Hongquan Zhang
Front. Med.    https://doi.org/10.1007/s11684-019-0696-6
Abstract   HTML   PDF (10191KB)

Pancreatic ductal adenocarcinoma (PDAC) is the ninth most common human malignancy and the sixth leading cause of cancer-related death in China. AcK27-HOXB9 is a newly identified HOXB9 post-transcriptional modification that can predict the outcome in lung adenocarcinoma and colon cancer well. However, the role of AcK27-HOXB9 in PDAC is unclear. The present study aims to investigate the differential diagnostic role of patients with AcK27-HOXB9 PDAC. Tissue microarrays consisting of 162 pancreatic tumor tissue samples from patients with PDAC and paired normal subjects were used to examine HOXB9 and AcK27-HOXB9 levels and localizations by immunohistochemical analysis and Western blot assay, respectively. HOXB9 was upregulated (P<0.0001), and AcK27-HOXB9 (P=0.0023) was downregulated in patients with PDAC. HOXB9 promoted (P=0.0115), while AcK27-HOXB9 (P=0.0279) inhibited PDAC progression. AcK27-HOXB9 predicted favorable outcome in patients with PDAC (P=0.0412). AcK27-HOXB9 also suppressed PDAC cell migration in a cell migration assay. The results of this study showed that HOXB9 promoted and AcK27-HOXB9 suppressed PDAC progression. The determination of ratio between HOXB9 and AcK27-HOXB9 exhibited potential diagnostic value in patients with PDAC.

Table and Figures | Reference | Related Articles | Metrics
Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit
Anqi Chen, Suhua Zhang, Jixi Li, Chaoneng Ji, Jinzhong Chen, Chengtao Li
Front. Med.    https://doi.org/10.1007/s11684-019-0698-4
Abstract   HTML   PDF (1319KB)

Growing evidence suggests that somatic hypermutational status and programmed cell death-1 overexpression are potential predictive biomarkers indicating treatment benefits from immunotherapy using immune checkpoint inhibitors. However, biomarker-matched trials are still limited, and many of the genomic alterations remain difficult to target. To isolate the potential somatic hypermutational tumor from microsatellite instability low/microsatellite stability (MSI-L/MSS) cases, we employed two commercial kits to determine MSI and forensic short tandem repeat (STR) alternations in 250 gastrointestinal (GI) tumors. Three types of forensic STR alternations, namely, allelic loss, Aadd, and Anew, were identified. 62.4% (156/250) of the patients with GI exhibited STR alternation, including 100% (15/15) and 60% (141/235) of the microsatellite high instability and MSI-L/MSS cases, respectively. 30% (75/250) of the patients exhibited STR instability with more than 26.32% (26.32%–84.21%) STR alternation. The cutoff with 26.32% of the STR alternations covered all 15 MSI cases and suggested that it might be a potential threshold. Given the similar mechanism of the mutations of MSI and forensic STR, the widely used forensic identifier STR kit might provide potential usage for identifying hypermutational status in GI cancers.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
Risk factors for chronic graft-versus-host disease after anti-thymocyte globulin-based haploidentical hematopoietic stem cell transplantation in acute myeloid leukemia
Meng Lv, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang, Xiaodong Mo
Front. Med.    https://doi.org/10.1007/s11684-019-0702-z
PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder
Xiao He, Chentao Jin, Mindi Ma, Rui Zhou, Shuang Wu, Haoying Huang, Yuting Li, Qiaozhen Chen, Mingrong Zhang, Hong Zhang, Mei Tian
Front. Med.    https://doi.org/10.1007/s11684-019-0704-x
Abstract   HTML   PDF (4496KB)

Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P<0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P<0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.

Table and Figures | Reference | Supplementary Material | Related Articles | Metrics
A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications
Xiaolin Fan, Yanzhen Xiong, Yuan Wang
Front. Med.    https://doi.org/10.1007/s11684-019-0700-1
Abstract   HTML   PDF (364KB)

Glioblastoma (GBM) is the most common and lethal primary neoplasm in the central nervous system. Despite intensive treatment, the prognosis for patients with GBM remains poor, with a median survival of 14−16 months. 90% of GBMs are primary GBMs that are full-blown at diagnosis without evidences of a pre-existing less-malignant precursor lesion. Therefore, identification of the cell(s) of origin for GBM—the normal cell or cell type that acquires the initial GBM-promoting genetic hit(s)—is the key to the understanding of the disease etiology and the development of novel therapies. Neural stem cells and oligodendrocyte precursor cells are the two major candidates for the cell(s) of origin for GBM. Latest data from human samples have reignited the longstanding debate over which cells are the clinically more relevant origin for GBMs. By critically analyzing evidences for or against the candidacy of each cell type, we highlight the most recent progress and debate in the field, explore the clinical implications, and propose future directions toward early diagnosis and preventive treatment of GBMs.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 3, 29 articles found