Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2019, Vol. 12 Issue (3) : 286-295    https://doi.org/10.1007/s12200-019-0864-y
RESEARCH ARTICLE
Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor
Briliant Adhi PRABOWO1,2,3(), I Dewa Putu HERMIDA1, Robeth Viktoria MANURUNG1, Agnes PURWIDYANTRI3,4, Kou-Chen LIU2,3,5,6()
1. Research Center for Electronics and Telecommunications, Indonesian Institute of Sciences, Bandung 40135, Indonesia
2. Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan, China
3. Biosensor Group, Chang Gung University, Taoyuan 33302, Taiwan, China
4. Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia
5. Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, China
6. Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, China
 Download: PDF(1604 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An analytical and experimental study of nano-film aluminum (Al) for ultra-high dynamic range surface plasmon resonance (SPR) biosensor is presented in this article. A thin film of 16 nm Al is proposed for metallic sensing layer for SPR sensor. For the protective layer, a 10 nm of gold (Au) layer was configured on top of Al as a protection layer. This ultra-high dynamic range of SPR biosensor reached the bulk refractive index sample limit up to 1.45 RIU. For the analytical study, with the assumption of anisotropic refractive indices experiment, the dynamic range showed a refractive index value of around 1.58 RIU. The refractive index value limit achieved by the proposed sensing design is potentially implemented in various applications, such as in chemical detection and environmental monitoring study with high refractive index solution sample. The experimental results are presented as a proof-of-concept of the proposed idea.

Keywords dynamic range      surface plasmon resonance (SPR)      sensor      aluminum (Al)      gold     
Corresponding Author(s): Briliant Adhi PRABOWO,Kou-Chen LIU   
Just Accepted Date: 31 January 2019   Online First Date: 01 April 2019    Issue Date: 16 September 2019
 Cite this article:   
Briliant Adhi PRABOWO,I Dewa Putu HERMIDA,Robeth Viktoria MANURUNG, et al. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0864-y
https://academic.hep.com.cn/foe/EN/Y2019/V12/I3/286
Fig.1  SPR sensor setup using a half cylindrical Kretschmann prism. An Al sensing layer protected by thin Au film was configured for a metal sensing structure of the SPR sensor
Fig.2  (a) SPR reflectivity profile of monolayer Au, Ag, and Al, coupling by BK7 prism and water for the dielectric medium; (b) calculated penetration depth of evanescent wave inside the medium by several metals around the visible range. The dashed line is the 600 nm of wavelength penetration depth in this study. Inset is the evanescent wave profile representing the penetration depth from the interface of a metal and dielectric medium
Fig.3  Optimization of (a) Al thickness (unit in nm) covered by 10 nm of Au, and (b) Au protection layer thickness with 16 nm of Al sensing layer. Inset shows the minimum point of the reflectivity profile of each Au thickness
Fig.4  Proposed metallic sensing layer response to the samples with various refractive index values. (a) Reflectivity dip shifting; (b) detection response and its range of the proposed sensing layers compared to other sensing structures
Fig.5  Detection response and its theoretical range of the anisotropic refractive index sample measurement compared to the bulk refractive index samples
No. technical remarks dynamic range limita) Ref.
1 fiber-optic-based SPR sensor up to 1.4018 RIU
(correspond to 6.98 × 102 RIU)
[54]
2 long range SPR sensor 8 × 103 RIU [55]
3 two channels fiber-optic-based SPR sensor up to 1.385 TIU
(correspond to 5.3 × 102 RIU)
[56]
4 multi-channel SPR sensor based on single-mode and multimode optical fiber up to 1.385 RIU
(correspond to 5.3 × 102 RIU)
[57]
5 reflective-distributed SPR sensor based on twin-core optical fiber up to 1.385 RIU
(correspond to 5.3 × 102 RIU)
[58]
6 distributed fiber SPR sensor up to 1.385 RIU
(correspond to 5.3 × 102 RIU)
[59]
7 wavelength interrogation, SPR imaging 4.63 × 102 RIU [60]
8 SPR sensor based on injection-molded prism 0.1 RIU [61]
9 SPR sensor based on phase interrogation 0.5 RIU [62]
10 aluminum gold sensing on Kretschmann up to 1.45 RIU
(corresponded to 11.8 × 102 RIU)
this work
Tab.1  Summary of dynamic range performance from related SPR sensor development
1 X D Hoa, A G Kirk, M Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors & Bioelectronics, 2007, 23(2): 151–160
https://doi.org/10.1016/j.bios.2007.07.001 pmid: 17716889
2 M J Linman, A Abbas, Q Cheng. Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst (London), 2010, 135(11): 2759–2767
https://doi.org/10.1039/c0an00466a pmid: 20830330
3 J Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 2008, 108(2): 462–493
https://doi.org/10.1021/cr068107d pmid: 18229953
4 H Šípová , T Špringer, J Homola. Streptavidin-enhanced assay for sensitive and specific detection of single nucleotide polymorphism in TP53. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2343–2350
https://doi.org/10.1007/s00216-010-3863-9 pmid: 20532484
5 B A Prabowo, Y F F Chang, H C C Lai, A Alom, P Pal, Y Y Y Lee, N F F Chiu, K Hatanaka, L C C Su, K C C Liu. Rapid screening of mycobacterium tuberculosis complex (MTBC) in clinical samples by a modular portable biosensor. Sensors and Actuators B, Chemical, 2018, 254: 742–748
https://doi.org/10.1016/j.snb.2017.07.102
6 B A Prabowo, R Y L Wang, M K Secario, P T Ou, A Alom, J J Liu, K C Liu. Rapid detection and quantification of enterovirus 71 by a portable surface plasmon resonance biosensor. Biosensors & Bioelectronics, 2017, 92: 186–191
https://doi.org/10.1016/j.bios.2017.01.043 pmid: 28214745
7 J Zhao, S Cao, C Liao, Y Wang, G Wang, X Xu, C Fu, G Xu, J Lian, Y Wang. Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors and Actuators B, Chemical, 2016, 230: 206–211
https://doi.org/10.1016/j.snb.2016.02.020
8 H R Gwon, S H Lee. Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials Transactions, 2010, 51(6): 1150–1155
https://doi.org/10.2320/matertrans.M2010003
9 H H Nguyen, J Park, S Kang, M Kim. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel, Switzerland), 2015, 15(5): 10481–10510
10 X Guo. Surface plasmon resonance based biosensor technique: a review. Journal of Biophotonics, 2012, 5(7): 483–501
https://doi.org/10.1002/jbio.201200015 pmid: 22467335
11 J W Chung, R Bernhardt, J C Pyun. Additive assay of cancer marker CA 19–9 by SPR biosensor. Sensors and Actuators B, Chemical, 2006, 118(1-2): 28–32
https://doi.org/10.1016/j.snb.2006.04.015
12 O Averseng, A Hagège, F Taran, C Vidaud. Surface plasmon resonance for rapid screening of uranyl affine proteins. Analytical Chemistry, 2010, 82(23): 9797–9802
https://doi.org/10.1021/ac102578y pmid: 21069968
13 M Piliarik, L Párová, J Homola. High-throughput SPR sensor for food safety. Biosensors & Bioelectronics, 2009, 24(5): 1399–1404
https://doi.org/10.1016/j.bios.2008.08.012 pmid: 18809310
14 H Zhang, L Yang, B Zhou, W Liu, J Ge, J Wu, Y Wang, P Wang. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosensors & Bioelectronics, 2013, 47: 391–395
https://doi.org/10.1016/j.bios.2013.03.067 pmid: 23608541
15 B A Prabowo, A Alom, M K Secario, F C P Masim, H C Lai, K Hatanaka, K C Liu. Graphene-based portable SPR sensor for the detection of mycobacterium tuberculosis DNA strain. Procedia Engineering, 2016, 168: 541–545
https://doi.org/10.1016/j.proeng.2016.11.520
16 Y J He. Novel and high-performance LSPR biochemical fiber sensor. Sensors and Actuators B, Chemical, 2015, 206: 212–219
https://doi.org/10.1016/j.snb.2014.09.061
17 J J Mock, R T Hill, Y J Tsai, A Chilkoti, D R Smith. Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. Nano Letters, 2012, 12(4): 1757–1764
https://doi.org/10.1021/nl204596h pmid: 22429053
18 J Zhang, Y Sun, Q Wu, Y Gao, H Zhang, Y Bai, D Song. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 211–218
https://doi.org/10.1016/j.colsurfb.2014.01.003 pmid: 24480068
19 L Wu, H S Chu, W S Koh, E P Li. Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 2010, 18(14): 14395–14400
https://doi.org/10.1364/OE.18.014395 pmid: 20639924
20 J B Maurya, Y K Prajapati, V Singh, J P Saini. Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2-SiO2 composite layer. Applied Physics A, Materials Science & Processing, 2015, 121(2): 525–533
https://doi.org/10.1007/s00339-015-9442-3
21 S Zeng, S Hu, J Xia, T Anderson, X Q Dinh, X M Meng, P Coquet, K T Yong. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B, Chemical, 2015, 207: 801–810
https://doi.org/10.1016/j.snb.2014.10.124
22 M Piliarik, M Vala, I Tichý, J Homola. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosensors & Bioelectronics, 2009, 24(12): 3430–3435
https://doi.org/10.1016/j.bios.2008.11.003 pmid: 19109004
23 B A Prabowo, A Alom, P Pal, M K Secario, R Y L Wang, K C Liu. Novel four layer metal sensing in portable SPR sensor platform for viral particles quantification. Proceedings of Eurosensors, 2017, 1(4): 528
https://doi.org/10.3390/proceedings1040528
24 B A Prabowo, K C Liu. Multi-metallic sensing layers for surface plasmon resonance sensor. In: Proceedings of IEEE SCOReD. Putrajaya: IEEE, 2017
25 Y H Choi, G Y Lee, H Ko, Y W Chang, M J Kang, J C Pyun. Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors & Bioelectronics, 2014, 56: 286–294
https://doi.org/10.1016/j.bios.2014.01.035 pmid: 24518301
26 S Szunerits, N Maalouli, E Wijaya, J P Vilcot, R Boukherroub. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Analytical and Bioanalytical Chemistry, 2013, 405(5): 1435–1443
https://doi.org/10.1007/s00216-012-6624-0 pmid: 23314618
27 H Vaisocherová, V Ševců, P Adam, B Špačková, K Hegnerová, A de los Santos Pereira, C Rodriguez-Emmenegger, T Riedel, M Houska, E Brynda, J Homola. Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosensors & Bioelectronics, 2014, 51: 150–157
https://doi.org/10.1016/j.bios.2013.07.015 pmid: 23954672
28 A Sabouri, A K Yetisen, R Sadigzade, H Hassanin, K Essa, H Butt. Three-dimensional microstructured lattices for oil sensing. Energy & Fuels, 2017, 31(3): 2524–2529
https://doi.org/10.1021/acs.energyfuels.6b02850
29 A K Ramesh, P Ramesh. Trade-off between sensitivity and dynamic range in designing MEMS capacitive pressure sensor. In: Proceedings of IEEE TENCON. Macao: IEEE, 2016, 1–3
30 P Dak, M A Alam. Numerical and analytical modeling to determine performance tradeoffs in hydrogel-based pH sensors. IEEE Transactions on Electron Devices, 2016, 63(6): 2524–2530
https://doi.org/10.1109/TED.2016.2557233
31 P Chen, X Shu, H Cao, K Sugden. High-sensitivity and large-dynamic-range refractive index sensors employing weak composite Fabry-Perot cavities. Optics Letters, 2017, 42(16): 3145–3148
https://doi.org/10.1364/OL.42.003145 pmid: 28809894
32 B A Prabowo, A Purwidyantri, K C Liu. Surface plasmon resonance optical sensor: a review on light source technology. Biosensors (Basel), 2018, 8(3): 80
https://doi.org/10.3390/bios8030080 pmid: 30149679
33 A K Mishra, S K Mishra, R K Verma. An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region. Journal of Physics D, Applied Physics, 2015, 48(43): 435502
https://doi.org/10.1088/0022-3727/48/43/435502
34 B H Ong, X Yuan, Y Y Tan, R Irawan, X Fang, L Zhang, S C Tjin. Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide. Lab on a Chip, 2007, 7(4): 506–512
https://doi.org/10.1039/b701899c pmid: 17389968
35 W Vandezande, K P F Janssen, F Delport, R Ameloot, D E De Vos, J Lammertyn, M B J Roeffaers. Parts per million detection of alcohol vapors via metal organic framework functionalized surface plasmon resonance sensors. Analytical Chemistry, 2017, 89(8): 4480–4487
https://doi.org/10.1021/acs.analchem.6b04510 pmid: 28318240
36 C Greulich, D Braun, A Peetsch, J Diendorf, B Siebers, M Epple, M Köller. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2012, 2(17): 6981–6987
https://doi.org/10.1039/c2ra20684f
37 B A Prabowo, Y F Chang, Y Y Lee, L C Su, C J Yu, Y H Lin, C Chou, N F Chiu, H C Lai, K C Liu. Application of an OLED integrated with BEF and giant birefringent optical (GBO) film in a SPR biosensor. Sensors and Actuators. B, Chemical, 2014, 198: 424–430
https://doi.org/10.1016/j.snb.2014.03.041
38 F Abdelmalek. Surface plasmon resonance based on Bragg gratings to test the durability of Au-Al films. Materials Letters, 2002, 57(1): 213–218
https://doi.org/10.1016/S0167-577X(02)00767-X
39 R Jha, A K Sharma. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Optics Letters, 2009, 34(6): 749–751
https://doi.org/10.1364/OL.34.000749 pmid: 19282920
40 L C Su, C M Chang, Y L Tseng, Y F Y S Chang, Y C Li, Y S Chang, C Chou. Rapid and highly sensitive method for influenza A (H1N1) virus detection. Analytical Chemistry, 2012, 84(9): 3914–3920
https://doi.org/10.1021/ac3002947 pmid: 22401570
41 K M McPeak, S V Jayanti, S J P Kress, S Meyer, S Iotti, A Rossinelli, D J Norris. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3): 326–333
https://doi.org/10.1021/ph5004237 pmid: 25950012
42 G M Hale, M R Querry. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied Optics, 1973, 12(3): 555–563
https://doi.org/10.1364/AO.12.000555 pmid: 20125343
43 Y H Tan, M Liu, B Nolting, J G Go, J Gervay-Hague, G Y Liu. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano, 2008, 2(11): 2374–2384
https://doi.org/10.1021/nn800508f pmid: 19206405
44 J J Homola, S S Yee, G G Gauglitz. Surface plasmon resonance sensors. Sensors and Actuators B, Chemical, 1999, 54(1–2): 3–15
https://doi.org/10.1016/S0925-4005(98)00321-9
45 H Y Li, S M Zhou, J Li, Y L Chen, S Y Wang, Z C Shen, L Y Chen, H Liu, X X Zhang. Analysis of the drude model in metallic films. Applied Optics, 2001, 40(34): 6307–6311
https://doi.org/10.1364/AO.40.006307 pmid: 18364937
46 J Homola. Surface Plasmon Resonance Based Sensors. Berlin: Springer, 2006
47 R P H Kooyman, R B M Schasfoort, A J Tudos. Physics of Surface Plasmon Resonance. In: Schasfoort R B M, Tudos A J, eds. Handbook of Surface Plasmon Resonance. Cambridge: The Royal Society of Chemistry, 2008, 403
48 X Sun, H Li. Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy. Nanotechnology, 2013, 24(35): 355706
https://doi.org/10.1088/0957-4484/24/35/355706 pmid: 23942082
49 M Kang, S G Park, K H Jeong. Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Scientific Reports, 2015, 5: 14790
https://doi.org/10.1038/srep14790 pmid: 26469768
50 A Purwidyantri, I El-Mekki, C S Lai. Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing. IEEE Transactions on Nanotechnology, 2017, 16(4): 551–559
https://doi.org/10.1109/TNANO.2016.2647263
51 A Purwidyantri, L Kamajaya, C H Chen, J D Luo, C C Chiou, Y C Tian, C Y Lin, C M Yang, C S Lai. A colloidal nanopatterning and downscaling of a highly periodic Au nanoporous EGFET biosensor. Journal of the Electrochemical Society, 2018, 165(4): H3170–H3177
https://doi.org/10.1149/2.0241804jes
52 I Ullah, H Lv, A J W Whang, Y Su. Analysis of a novel design of uniformly illumination for Fresnel lens-based optical fiber daylighting system. Energy and Building, 2017, 154: 19–29
https://doi.org/10.1016/j.enbuild.2017.08.066
53 C J Roberts, P M Williams, J Davies, C Dawkes, J Sefton, J C Edwards, G Haymes, C Bestwick, M C Davies, S J B Tendler. Real-space differentiation of IgG and IgM antibodies deposited on microtiter wells by scanning force microscopy. Langmuir, 1995, 11(5): 1822–1826
https://doi.org/10.1021/la00005a063
54 M Kanso, S Cuenot, G Louarn. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics, 2008, 3(2-3): 49–57
https://doi.org/10.1007/s11468-008-9055-1
55 R Slavík, J Homola. Optical multilayers for LED-based surface plasmon resonance sensors. Applied Optics, 2006, 45(16): 3752–3759
https://doi.org/10.1364/AO.45.003752 pmid: 16724133
56 Y Wei, Y Su, C Liu, X Nie, Z Liu, Y Zhang, Y Zhang. Two-channel SPR sensor combined application of polymer- and vitreous-clad optic fibers. Sensors (Basel, Switzerland), 2017, 17(12): 2862
https://doi.org/10.3390/s17122862 pmid: 29232841
57 Y Wei, C Liu, Y Zhang, Y Luo, X Nie, Z Liu, Y Zhang, F Peng, Z Zhou. Multi-channel SPR sensor based on the cascade application of the single-mode and multimode optical fiber. Optics Communications, 2017, 390: 82–87
https://doi.org/10.1016/j.optcom.2016.12.069
58 Z Liu, Y Wei, Y Zhang, Z Zhu, E Zhao, Y Zhang, J Yang, C Liu, L Yuan. Reflective-distributed SPR sensor based on twin-core fiber. Optics Communications, 2016, 366: 107–111
https://doi.org/10.1016/j.optcom.2015.12.018
59 Z, Liu Y, Wei Y, Zhang C, Liu Y, Zhang E, Zhao J, Yang L. Yuan Compact distributed fiber SPR sensor based on TDM and WDM technology. Optics Express, 2015, 23(18): 24004–24012
https://doi.org/10.1364/OE.23.024004
60 Y Zeng, L Wang, S Y Wu, J He, J Qu, X Li, H P Ho, D Gu, B Z Gao, Y Shao. Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors (Basel, Switzerland), 2017, 17(1): 90
https://doi.org/10.3390/s17010090 pmid: 28067766
61 H Chen, C Chen, Y Chang, H Chuang. Compact surface plasmon resonance biosensor utilizing an injection-molded prism. In: Proceedings of Advanced Environmental, Chemical, and Biological Sensing Technologies XIII. Baltimore: SPIE, 2018, 986205
62 G Lan, S Liu, X Zhang, Y Wang, Y Song. Highly sensitive and wide-dynamic-range liquid-prism surface plasmon resonance refractive index sensor based on the phase and angular interrogations. Chinese Optics Letters, 2016, 14(2): 022401–022405
https://doi.org/10.3788/COL201614.022401
[1] FOE-18064-OF-BP_suppl_1 Video  
[1] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[2] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[3] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[4] Yan DENG, Jian OU, Jiangying YU, Min ZHANG, Li ZHANG. Coupled two aluminum nanorod antennas for near-field enhancement[J]. Front. Optoelectron., 2017, 10(2): 138-143.
[5] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[6] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[7] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[8] Lili MAO,Qizhen SUN,Ping LU,Zefeng LAO,Deming LIU. Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing[J]. Front. Optoelectron., 2015, 8(4): 431-438.
[9] Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
[10] Xiaofei LU,Xi-Cheng ZHANG. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics[J]. Front. Optoelectron., 2014, 7(2): 121-155.
[11] Kaushik BRAHMACHARI, Mina RAY. Effect of prism material on design of surface plasmon resonance sensor by admittance loci method[J]. Front Optoelec, 2013, 6(2): 185-193.
[12] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[13] Junjie DAI, Longyan YUAN, Qize ZHONG, Fengchao ZHANG, Hongfei CHEN, Chao YOU, Xiaohong FAN, Bin HU, Jun ZHOU. A simple infrared nanosensor array based on carbon nanoparticles[J]. Front Optoelec, 2012, 5(3): 266-270.
[14] Yuewen HAN, Cheng CHENG. An optimized distributed fiber Bragg grating sensing system based on optical frequency domain reflectometry[J]. Front Optoelec, 2012, 5(3): 345-350.
[15] Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Front Optoelec Chin, 2011, 4(2): 204-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed