Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2018, Vol. 12 Issue (2): 105-117   https://doi.org/10.1007/s11706-018-0419-y
  本期目录
A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets
Jiangli XUE1, Maosong MO1,2(), Zhuming LIU1, Dapeng YE2(), Zhihua CHENG3, Tong XU3, Liangti QU3
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3. Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science (Ministry of Education), Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(600 KB)   HTML
Abstract

A 3D macroporous conductive polymer foam of thin 2D polypyrrole (PPy) nanosheets is developed by adopting a novel intercalation of guest (monomer Py) between the layers of the lamellar host (3D vanadium oxide foam) template-replication strategy. The 3D PPy foam of thin 2D nanosheets exhibits diverse functions including reversible compressibility, shape memory, absorption/adsorption and mechanically deformable supercapacitor characteristics. The as-prepared 3D PPy foam of thin nanosheets is highly light weight with a density of 12 mg·cm−3 which can bear the large compressive strain up to 80% whether in wet or dry states; and can absorb organic solutions or extract dye molecules fast and efficiently. In particular, the PPy nanosheet-based foam as a mechanically deformable electrode material for supercapacitors exhibits high specific capacitance of 70 F·g−1 at a fast charge–discharge rate of 50 mA·g−1, superior to that of any other typical pure PPy-based capacitor. We envision that the strategy presented here should be applicable to fabrication of a wide variety of organic polymer foams and hydrogels of low-dimensional nanostructures and even inorganic foams and hydrogels of low-dimensional nanostructures, and thus allow for exploration of their advanced physical and chemical properties.

Key wordsintercalation polymerization    polypyrrole    nanosheet    supercapacitor    foam    multifunctionality
收稿日期: 2018-01-08      出版日期: 2018-05-29
Corresponding Author(s): Maosong MO,Dapeng YE   
 引用本文:   
. [J]. Frontiers of Materials Science, 2018, 12(2): 105-117.
Jiangli XUE, Maosong MO, Zhuming LIU, Dapeng YE, Zhihua CHENG, Tong XU, Liangti QU. A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. Front. Mater. Sci., 2018, 12(2): 105-117.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-018-0419-y
https://academic.hep.com.cn/foms/CN/Y2018/V12/I2/105
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
PPy morphology Electrolyte Electrode system Capacitance Ref.
Particle liquid electrolyte two 1.6?14 mF [49]
Particle film PAN?LiCF3SO3?EC?PC gel two N/A [50]
Particle film PVA?H3PO4?H2O gel two N/A [51]
Nanosheet film PVA/LiClO4 gel two 38 F·g−1 [52]
Clusters 0.5 mol/L H2SO4 three 586 F·g−1 [23]
3D nanosheets network LiClO4 two 70 F·g−1 this work
Tab.1  
Fig.6  
  
  
  
  
  
  
  
1 Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805
https://doi.org/10.1002/adma.200600148
2 Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821
https://doi.org/10.1038/nature00785 pmid: 12075343
3 Schaedler T A, Jacobsen A J, Torrents A, et al.. Ultralight metallic microlattices. Science, 2011, 334(6058): 962–965
https://doi.org/10.1126/science.1211649 pmid: 22096194
4 Zheng X, Lee H, Weisgraber T H, et al.. Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344(6190): 1373–1377
https://doi.org/10.1126/science.1252291 pmid: 24948733
5 Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 2013, 25(18): 2554–2560
https://doi.org/10.1002/adma.201204576 pmid: 23418099
6 Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
https://doi.org/10.1038/127741a0
7 Tillotson T M, Hrubesh L W. Transparent ultralow-density silica aerogels prepared by a two-step sol‒gel process. Journal of Non-Crystalline Solids, 1992, 145: 44–50
https://doi.org/10.1016/S0022-3093(05)80427-2
8 Tappan B C, Huynh M H, Hiskey M A, et al.. Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. Journal of the American Chemical Society, 2006, 128(20): 6589–6594
https://doi.org/10.1021/ja056550k pmid: 16704258
9 Verdooren A, Chan H M, Grenestedt J L, et al.. Fabrication of low-density ferrous metallic foams by reduction of chemically bonded ceramic foams. Journal of the American Ceramic Society, 2006, 89(10): 3101–3106
https://doi.org/10.1111/j.1551-2916.2006.01225.x
10 Zou J, Liu J, Karakoti A S, et al.. Ultralight multiwalled carbon nanotube aerogel. ACS Nano, 2010, 4(12): 7293–7302
https://doi.org/10.1021/nn102246a pmid: 21090673
11 Zhao Y, Hu C, Hu Y, et al.. A versatile, ultralight, nitrogen-doped graphene framework. Angewandte Chemie International Edition, 2012, 51(45): 11371–11375
https://doi.org/10.1002/anie.201206554 pmid: 23060007
12 Wang C, Ding Y, Yuan Y, et al.. Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small, 2016, 12(30): 4070–4076
https://doi.org/10.1002/smll.201601905 pmid: 27357260
13 Novoselov K S, Geim A K, Morozov S V, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
14 Xu Y, Sheng K, Li C, et al.. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324–4330
https://doi.org/10.1021/nn101187z pmid: 20590149
15 Lee H S, Min S W, Chang Y G, et al.. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Letters, 2012, 12(7): 3695–3700
https://doi.org/10.1021/nl301485q pmid: 22681413
16 Zhu J, Cao L, Wu Y, et al.. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Letters, 2013, 13(11): 5408–5413
https://doi.org/10.1021/nl402969r pmid: 24148090
17 Shi Y, Peng L, Ding Y, et al.. Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44(19): 6684–6696
https://doi.org/10.1039/C5CS00362H pmid: 26119242
18 Yang Y L, Gupta M C, Dudley K L, et al.. Conductive carbon nanofiber‒polymer foam structures. Advanced Materials, 2005, 17(16): 1999–2003
https://doi.org/10.1002/adma.200500615
19 Liu J, Wang Z, Zhao Y, et al.. Three-dimensional graphene‒polypyrrole hybrid electrochemical actuator. Nanoscale, 2012, 4(23): 7563–7568
https://doi.org/10.1039/c2nr32699j pmid: 23108294
20 Xie P, Rong M Z, Zhang M Q. Moisture battery formed by direct contact of magnesium with foamed polyaniline. Angewandte Chemie International Edition, 2016, 55(5): 1805–1809
https://doi.org/10.1002/anie.201510686 pmid: 26696566
21 Xie A, Wu F, Jiang W, et al.. Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(8): 2175–2181
https://doi.org/10.1039/C6TC05057C
22 Berdichevsky Y, Lo Y H. Polypyrrole nanowire actuators. Advanced Materials, 2006, 18(1): 122–125
https://doi.org/10.1002/adma.200501621
23 Yang X, Lin Z, Zheng J, et al.. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale, 2016, 8(16): 8650–8657
https://doi.org/10.1039/C6NR00468G pmid: 27050711
24 Liu S, Gordiichuk P, Wu Z S, et al.. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nature Communications, 2015, 6(1): 8817
https://doi.org/10.1038/ncomms9817 pmid: 26577914
25 Mahmoudian M R, Alias Y, Basirun W J, et al.. Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection. Electrochimica Acta, 2012, 72(4): 46–52
https://doi.org/10.1016/j.electacta.2012.03.144
26 Xue J L, Zhao F, Hu C G, et al.. Vapor-activated power generation on conductive polymer. Advanced Functional Materials, 2016, 26(47): 8784–8792
https://doi.org/10.1002/adfm.201604188
27 Xue J, Hu C, Lv L, et al.. Re-shaping graphene hydrogels for effectively enhancing actuation responses. Nanoscale, 2015, 7(29): 12372–12378
https://doi.org/10.1039/C5NR02604K pmid: 26130158
28 Wang L, Schindler J, Thomas J A, et al.. Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chemistry of Materials, 1995, 7(10): 1753–1755
https://doi.org/10.1021/cm00058a001
29 Tang H, Wang J, Yin H, et al.. Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Advanced Materials, 2015, 27(6): 1117–1123
https://doi.org/10.1002/adma.201404622 pmid: 25529000
30 Liu W, Xu S, Guan S, et al.. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid-state quantum yield and stability. Advanced Materials, 2018, 30(2): 1704376
https://doi.org/10.1002/adma.201704376 pmid: 29178148
31 Gao R, Yan D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science, 2017, 8(1): 590–599
https://doi.org/10.1039/C6SC03515A pmid: 28451206
32 Li B, Gu Z, Kurniawan N, et al.. Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Advanced Materials, 2017, 29(29): 1700373
https://doi.org/10.1002/adma.201700373 pmid: 28585312
33 Zhao Y, Liu J, Hu Y, et al.. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Advanced Materials, 2013, 25(4): 591–595
https://doi.org/10.1002/adma.201203578 pmid: 23081662
34 Si Y, Yu J, Tang X, et al.. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nature Communications, 2014, 5: 5802
https://doi.org/10.1038/ncomms6802 pmid: 25512095
35 Kim K H, Oh Y, Islam M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotechnology, 2012, 7(9): 562–566
https://doi.org/10.1038/nnano.2012.118 pmid: 22820743
36 Worsley M A, Kucheyev S O, Mason H E, et al.. Mechanically robust 3D graphene macroassembly with high surface area. Chemical Communications, 2012, 48(67): 8428–8430
https://doi.org/10.1039/c2cc33979j pmid: 22797515
37 Tang Z, Shen S, Zhuang J, et al.. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angewandte Chemie International Edition, 2010, 49(27): 4603–4607
https://doi.org/10.1002/anie.201000270 pmid: 20491102
38 Schiavon G, Zotti G, Comisso N, et al.. Ion exchange in the electrochemical switching of polypyrroles in acetonitrile by the electrochemical quartz crystal microbalance. Electrolyte incorporation by hydrogen bonding of anions to pyrrole. The Journal of Physical Chemistry, 1994, 98(18): 4861–4864
https://doi.org/10.1021/j100069a015
39 Cong H P, Ren X C, Wang P, et al.. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3): 2693–2703
https://doi.org/10.1021/nn300082k pmid: 22303866
40 Niu Z, Chen J, Hng H H, et al.. A leavening strategy to prepare reduced graphene oxide foams. Advanced Materials, 2012, 24(30): 4144–4150
https://doi.org/10.1002/adma.201200197 pmid: 22544807
41 Gui X, Wei J, Wang K, et al.. Carbon nanotube sponges. Advanced Materials, 2010, 22(5): 617–621
https://doi.org/10.1002/adma.200902986 pmid: 20217760
42 Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43(8): 1758–1767
https://doi.org/10.1016/j.carbon.2005.02.023
43 Li S, Tian S, Feng Y, et al.. A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene. Journal of Hazardous Materials, 2010, 183(1‒3): 506–511
https://doi.org/10.1016/j.jhazmat.2010.07.052 pmid: 20724069
44 Du C, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology, 2005, 16(4): 350–353
https://doi.org/10.1088/0957-4484/16/4/003
45 Du C, Pan N. Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006, 160(2): 1487–1494
https://doi.org/10.1016/j.jpowsour.2006.02.092
46 Bao L, Li X. Towards textile energy storage from cotton T-shirts. Advanced Materials, 2012, 24(24): 3246–3252
https://doi.org/10.1002/adma.201200246 pmid: 22588714
47 Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon‒carbon supercapacitors. Journal of the Electrochemical Society, 2003, 150(3): A292–A300
https://doi.org/10.1149/1.1543948
48 Niu Z, Dong H, Zhu B, et al.. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Advanced Materials, 2013, 25(7): 1058–1064
https://doi.org/10.1002/adma.201204003 pmid: 23255187
49 Sung J H, Kim S J, Lee K H. Fabrication of microcapacitors using conducting polymer microelectrodes. Journal of Power Sources, 2003, 124(1): 343–350
https://doi.org/10.1016/S0378-7753(03)00669-4
50 Sung J H, Kim S J, Lee K H. Fabrication of all-solid-state electrochemical microcapacitors. Journal of Power Sources, 2004, 133(2): 312–319
https://doi.org/10.1016/j.jpowsour.2004.02.003
51 Sung J H, Kim S J, Jeong S H, et al.. Flexible micro-supercapacitors. Journal of Power Sources, 2006, 162(2): 1467–1470
https://doi.org/10.1016/j.jpowsour.2006.07.073
52 Dubal D P, Lee S H, Kim J G, et al.. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry, 2012, 22(7): 3044–3052
https://doi.org/10.1039/c2jm14470k
53 Xue J, Zhao Y, Cheng H, et al.. An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Physical Chemistry Chemical Physics, 2013, 15(21): 8042–8045
https://doi.org/10.1039/c3cp51571k pmid: 23629155
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed