Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (2) : 126-132    https://doi.org/10.1007/s11706-019-0456-1
RESEARCH ARTICLE
Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons
Chengzhi YANG, Shikun CHEN, Huilan SU(), Haoyue ZHANG, Jianfei TANG, Cuiping GUO, Fang SONG, Wang ZHANG, Jiajun GU, Qinglei LIU
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
 Download: PDF(1722 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4 ions by the chelation of −C=O, reducing agent for Au(0) by the reduction of −OH, and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7–10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.

Keywords Au NPs      biocompatibility      small size      dispersivity      silk fibroin fiber     
Corresponding Author(s): Huilan SU   
Online First Date: 03 April 2019    Issue Date: 19 June 2019
 Cite this article:   
Chengzhi YANG,Shikun CHEN,Huilan SU, et al. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons[J]. Front. Mater. Sci., 2019, 13(2): 126-132.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0456-1
https://academic.hep.com.cn/foms/EN/Y2019/V13/I2/126
Fig.1  FESEM images: (a) SFFs dipped in the HAuCl4 solution; (b) degummed SFFs.
Fig.2  XRD patterns of SFFs and dipped SFFs in the HAuCl4 solution.
Fig.3  (a) TEM and (b) HRTEM images of Au/SF obtained by the disintegration of Au/SFF in a certain CaCl2 solution. The inset shows the SAED pattern.
Fig.4  (a) UV?vis spectra?of SFFs and Au/SFF. (b) Fluorescence spectrum of Au/SF with the excitation wavelength at 230 nm.
Fig.5  FTIR spectra of SFFs, AuCl4 on the SFF supports (product of 4 °C) and Au/SFF (final products in the solid state).
Fig.6  The synthesis of Au NPs: (i) degumming the Na2CO3 solution at 110 °C for 1 h; (ii) immersing SFFs in the HAuCl4 solution at 4 °C for 24 h; (iii) immersing as-dipped SFFs in the HAuCl4 solution at 75 °C for 4 h; (iv) dispersing solid Au/SFF in a certain CaCl2 solution at 60 °C for 4 h.
1 K Hayashi, M Nakamura, H Miki, et al.. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core–shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chemical Communications, 2013, 49(46): 5334–5336
https://doi.org/10.1039/c3cc41876f pmid: 23648868
2 W Lin, C Yang, Z Xue, et al.. Controlled construction of gold nanoparticles in situ from β-cyclodextrin based unimolecular micelles for in vitro computed tomography. Journal of Colloid and Interface Science, 2018, 528: 135–144
https://doi.org/10.1016/j.jcis.2018.05.082 pmid: 29843061
3 P S Ghosh, C K Kim, G Han, et al.. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2008, 2(11): 2213–2218
https://doi.org/10.1021/nn800507t pmid: 19206385
4 F Zhan, T Wang, L Iradukunda, et al.. A gold nanoparticle-based lateral flow biosensor for sensitive visual detection of the potato late blight pathogen, Phytophthora infestans. Analytica Chimica Acta, 2018, 1036(7): 153–161
https://doi.org/10.1016/j.aca.2018.06.083 pmid: 30253826
5 H Zhang, Y Zhang, R Jin, et al.. Preparation and photothermal therapy of hyaluronic acid-conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. Journal of Materials Science, 2018, 53(24): 16252–16262
https://doi.org/10.1007/s10853-018-2773-7
6 L Han, Y Zhang, Y Zhang, et al.. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017, 171(15): 32–38
https://doi.org/10.1016/j.talanta.2017.04.056 pmid: 28551145
7 G Bodelón, C Costas, J Pérez-Juste, et al.. Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13: 40–60
" target="_blank">https://doi.org/10.1016/j.nantod.2016.12.014
8 X Hong, C Tan, J Chen, et al.. Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8(1): 40–55
https://doi.org/10.1007/s12274-014-0636-3
9 J Kneipp, H Kneipp, M McLaughlin, et al.. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters, 2006, 6(10): 2225–2231
https://doi.org/10.1021/nl061517x pmid: 17034088
10 J Zhang, Y Gao, R A Alvarez-Puebla, et al.. Synthesis and SERS properties of nanocrystalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Advanced Materials, 2006, 18(24): 3233–3237
https://doi.org/10.1002/adma.200601368
11 J Hurh, J Markus, Y J Kim, et al.. Facile reduction and stabilization of ginsenoside-functionalized gold nanoparticles: optimization, characterization, and in vitro cytotoxicity studies. Journal of Nanoparticle Research, 2017, 19(9): 313 (13 pages)
https://doi.org/10.1007/s11051-017-3980-x
12 J E Park, M Kim, J H Hwang, et al.. Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods, 2017, 1(3): 1600032 (6 pages)
https://doi.org/10.1002/smtd.201600032
13 R Shukla, V Bansal, M Chaudhary, et al.. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23): 10644–10654
https://doi.org/10.1021/la0513712 pmid: 16262332
14 C Xu, G A Tung, S Sun. Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chemistry of Materials, 2008, 20(13): 4167–4169
https://doi.org/10.1021/cm8008418 pmid: 19079760
15 P Wang, X Wang, L Wang, et al.. Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16(3): 034610
https://doi.org/10.1088/1468-6996/16/3/034610 pmid: 27877797
16 M Brust, M Walker, D Bethell, et al.. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 1994, (7): 801–802
https://doi.org/10.1039/C39940000801
17 A Chauhan, S Zubair, S Tufail, et al.. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 2011, 6: 2305–2319
pmid: 22072868
18 P R Chandran, M Naseer, N Udupa, et al.. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH. Nanotechnology, 2012, 23(1): 015602
https://doi.org/10.1088/0957-4484/23/1/015602 pmid: 22156111
19 C Vepari, D L Kaplan. Silk as a biomaterial. Progress in Polymer Science, 2007, 32(8–9): 991–1007
https://doi.org/10.1016/j.progpolymsci.2007.05.013 pmid: 19543442
20 J Rnjak-Kovacina, T M DesRochers, K A Burke, et al.. The effect of sterilization on silk fibroin biomaterial properties. Macromolecular Bioscience, 2015, 15(6): 861–874
https://doi.org/10.1002/mabi.201500013 pmid: 25761231
21 L D Koh, Y Cheng, C P Teng, et al.. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015, 46: 86–110
https://doi.org/10.1016/j.progpolymsci.2015.02.001
22 Y Shen, M A Johnson, D C Martin. Microstructural characterization of Bombyx mori silk fibers. Macromolecules, 1998, 31(25): 8857–8864
https://doi.org/10.1021/ma980281j
23 V Mhuka, S Dube, M M Nindi. Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. International Journal of Biological Macromolecules, 2013, 52: 305–311
https://doi.org/10.1016/j.ijbiomac.2012.09.010 pmid: 23000253
24 Y Jin, Y Zhang, Y Hang, et al.. A simple process for dry spinning of regenerated silk fibroin aqueous solution. Journal of Materials Research, 2013, 28(20): 2897–2902
https://doi.org/10.1557/jmr.2013.276
25 Q Dong, H Su, D Zhang. In situ depositing silver nanoclusters on silk fibroin fibers supports by a novel biotemplate redox technique at room temperature. The Journal of Physical Chemistry B, 2005, 109(37): 17429–17434
https://doi.org/10.1021/jp052826z pmid: 16853228
26 Z Li, Y Yang, J Yao, et al.. A facile fabrication of silk/MoS2 hybrids for photothermal therapy. Materials Science and Engineering C, 2017, 79: 123–129
https://doi.org/10.1016/j.msec.2017.05.010 pmid: 28628998
27 N Johari, H R M Hosseini, A Samadikuchaksaraei. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering. Materials Science and Engineering C, 2017, 79: 783–792
https://doi.org/10.1016/j.msec.2017.05.105 pmid: 28629081
28 W Wei, Y Zhang, H Shao, et al.. Post-treatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Journal of Materials Research, 2011, 26(9): 1100–1106
https://doi.org/10.1557/jmr.2011.47
29 T Shen, T Wang, G Cheng, et al.. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. International Journal of Biological Macromolecules, 2018, 113: 458–463
https://doi.org/10.1016/j.ijbiomac.2018.02.022 pmid: 29421494
30 Y Yang, X Chen, F Ding, et al.. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28(9): 1643–1652
https://doi.org/10.1016/j.biomaterials.2006.12.004 pmid: 17188747
31 K McGrath, D Kaplan, eds. Protein-based Materials. Boston, USA: Birkhäuser, 1997
https://doi.org/10.1007/978-1-4612-4094-5
32 D Riabinina, J Zhang, M Chaker, et al.. Control of plasmon resonance of gold nanoparticles via excimer laser irradiation. Applied Physics A: Materials Science & Processing, 2011, 102(1): 153–160
https://doi.org/10.1007/s00339-010-6058-5
33 S Liu, G Chen, P N Prasad, et al.. Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chemistry of Materials, 2011, 23(18): 4098–4101
https://doi.org/10.1021/cm201343k
34 H Yu, M Chen, P M Rice, et al.. Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Letters, 2005, 5(2): 379–382
https://doi.org/10.1021/nl047955q pmid: 15794629
35 H Zhu, M Du, M Zou, et al.. Facile and green synthesis of well-dispersed Au nanoparticles in PAN nanofibers by tea polyphenols. Journal of Materials Chemistry, 2012, 22(18): 9301–9307
https://doi.org/10.1039/c2jm16569d
36 L A Dykman, N G Khlebtsov. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 2012, 41(6): 2256–2282
https://doi.org/10.1039/C1CS15166E pmid: 22130549
37 J P Wilcoxon, J E Martin, F Parsapour, et al.. Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics, 1998, 108(21): 9137–9143
https://doi.org/10.1063/1.476360
38 C Zhou, J Yu, Y Qin, et al.. Grain size effects in polycrystalline gold nanoparticles. Nanoscale, 2012, 4(14): 4228–4233
https://doi.org/10.1039/c2nr30212h pmid: 22456680
39 X Zhang. Gold nanoparticles: Recent advances in the biomedical applications. Cell Biochemistry and Biophysics, 2015, 72(3): 771–775
https://doi.org/10.1007/s12013-015-0529-4 pmid: 25663504
40 C Zhou, M Long, Y P Qin, et al.. Luminescent gold nanoparticles with efficient renal clearance. Angewandte Chemie - International Edition, 2011, 50(14): 3168–3172
https://doi.org/10.1002/anie.201007321 pmid: 21374769
41 J Wei, Y Zhu, T Peng, et al.. Analyses on FT-IR and Raman spectra of sericin fixed silk fibres. Textile Auxiliaries, 2004, 21(3): 51–53 (in Chinese)
https://doi.org/10.3969/j.issn.1004-0439.2004.03.016
42 H Su, J Han, Q Dong, et al.. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers. Applied Physics A: Materials Science & Processing, 2011, 102(2): 429–434
https://doi.org/10.1007/s00339-010-6137-7
[1] Xiang SUN, Qing-Song YAO, Yu-Chao LI, Fen ZHANG, Rong-Chang ZENG, Yu-Hong ZOU, Shuo-Qi LI. Biocorrosion resistance and biocompatibility of Mg--Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31[J]. Front. Mater. Sci., 2020, 14(4): 426-441.
[2] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[3] Junbo LI,Jianlong ZHAO,Wenlan WU,Ju LIANG,Jinwu GUO,Huiyun ZHOU,Lijuan LIANG. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles[J]. Front. Mater. Sci., 2016, 10(2): 178-186.
[4] Lei ZHOU,Guo-Xin TAN,Cheng-Yun NING. Modification of biomaterials surface by mimetic cell membrane to improve biocompatibility[J]. Front. Mater. Sci., 2014, 8(4): 325-331.
[5] Mei ZHOU,Wei-Ci WANG,Yong-Gui LIAO,Wen-Qi LIU,Miao YU,Chen-Xi OUYANG. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs[J]. Front. Mater. Sci., 2014, 8(1): 63-71.
[6] Yi-Xia YIN,Ji-Ling YI,Li-Juan XIE,Qiong-Jiao YAN,Hong-Lian DAI,Shi-Pu LI. Synthesis, characterization and biological evaluation of poly [LA-co-(Glc-alt-Lys)] for nerve regeneration scaffold[J]. Front. Mater. Sci., 2014, 8(1): 95-101.
[7] Jia-Cheng GAO, Li-Ying QIAO, Ren-Long XIN, . Effect of Mg 2+ concentration on biocompatibility of pure magnesium[J]. Front. Mater. Sci., 2010, 4(2): 126-131.
[8] Jia-Cheng GAO, Li-Ying QIAO, Ren-Long XIN, . Corrosion and bone response of magnesium implants after surface modification by heat-self-assembled monolayer[J]. Front. Mater. Sci., 2010, 4(2): 120-125.
[9] Xin-Yu YE, Min-Fang CHEN, Chen YOU, De-Bao LIU, . The influence of HF treatment on corrosion resistance and in vitro biocompatibility of Mg-Zn-Zr alloy[J]. Front. Mater. Sci., 2010, 4(2): 132-138.
[10] REN Yibin, HUANG Jingjing, ZHANG Bingchun, YANG Ke. Preliminary study of biodegradation of AZ31B magnesium alloy[J]. Front. Mater. Sci., 2007, 1(4): 401-404.
[11] QI Yumin, CUI Chunxiang, LIU Shuangjin, WANG Huifen, HE Yun. Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite[J]. Front. Mater. Sci., 2007, 1(3): 252-257.
[12] JIAO Yanpeng, LIU Zonghua, ZHOU Changren, CUI Fuzhai. Formation of bone-like apatite on poly(L-lactide) to improve osteoblast-like compatibility in vitro and in vivo[J]. Front. Mater. Sci., 2007, 1(2): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed