Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 342-351    https://doi.org/10.1007/s11706-019-0477-9
RESEARCH ARTICLE
SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity
Liuxin YANG1, Zhou CHEN2, Jian ZHANG1, Chang-An WANG1()
1. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
 Download: PDF(1437 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterostructure is an effective strategy to facilitate the charge carrier separation and promote the photocatalytic performance. In this paper, uniform SrTiO3 nanocubes were in-situ grown on TiO2 nanowires to construct heterojunctions. The composites were prepared by a facile alkaline hydrothermal method and an in-situ deposition method. The obtained SrTiO3/TiO2 exhibits much better photocatalytic activity than those of pure TiO2 nanowires and commercial TiO2 (P25) evaluated by photocatalytic water splitting and decomposition of Rhodamine B (RB). The hydrogen generation rate of SrTiO3/TiO2 nanowires could reach 111.26 mmol·g−1·h−1 at room temperature, much better than those of pure TiO2 nanowires (44.18 mmol·g−1·h−1) and P25 (35.77 mmol·g−1·h−1). The RB decomposition rate of SrTiO3/TiO2 is 7.2 times of P25 and 2.4 times of pure TiO2 nanowires. The photocatalytic activity increases initially and then decreases with the rising content of SrTiO3, suggesting an optimum SrTiO3/TiO2 ratio that can further enhance the catalytic activity. The improved photocatalytic activity of SrTiO3/TiO2 is principally attributed to the enhanced charge separation deriving from the SrTiO3/TiO2 heterojunction.

Keywords photocatalytic      SrTiO3/TiO2 nanowire      heterostructure      nanocomposite     
Corresponding Author(s): Chang-An WANG   
Online First Date: 01 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Liuxin YANG,Zhou CHEN,Jian ZHANG, et al. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0477-9
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/342
Fig.1  SEM images of SrTiO3/TiO2(0.2) nanowire heterostructure at different stages: (a) newly prepared TiO2 nanowires; (b) after treatment with 1 mol·L−1 HCl for 24 h; (c) after calcination at 750 °C for 3 h; (d) after in-situ hydrothermal treatment in Sr(OH)2 alkaline solution. (e)(f) TEM images and EDS mapping of SrTiO3/TiO2(0.2). (g) HRTEM image of the region of SrTiO3/TiO2(0.2) heterojunction. (h) SAED pattern from a single SrTiO3 nanocube.
Fig.2  XRD patterns of pure TiO2 nanowires (a) and SrTiO3/TiO2(0.2) (b).
Fig.3  (a) XPS fully scanned spectra of SrTiO3/TiO2(0.2) and pure TiO2 nanowires. High-resolution XPS spectra of Ti 2p for (b) pure TiO2 nanowires and (c) SrTiO3/TiO2(0.2).
Fig.4  SEM images of (a) SrTiO3/TiO2(0.05) and (b) SrTiO3/TiO2(0.4).
Fig.5  (a) Photocatalytic H2 evolution rates over various catalysts. (b) Photocatalytic RB degradation rates over different catalysts (the solution was kept in the dark for 30 min to set the adsorption?desorption equilibrium before test).
Sample SBET/(m2·g1)
P25 47.17
TiO2 nanowires 7.25
SrTiO3/TiO2(0.05) 9.16
SrTiO3/TiO2(0.2) 13.10
SrTiO3/TiO2(0.4) 16.45
Tab.1  Surface areas of various samples determined by the BET method
Fig.6  (a) UV-vis absorption spectra, (b) PL spectra and (c) EIS Nyquist plots of SrTiO3/TiO2(0.2), pure TiO2 nanowires and P25.
Sample τ1/ns τ2/ns B1 B2 τave/ns χ2
P25 0.96 2.95 3189.43 701.52 1.76 1.15
TiO2 nanowires 0.68 5.33 645.97 57.50 2.59 1.09
SrTiO3/TiO2 1.84 10.92 213.42 17.2 4.78 1.12
Tab.2  Decay parameters and the average lifetime (τave) from time-resolved PL spectroscopy of P25, TiO2 nanowires and SrTiO3/TiO2(0.2)
Fig.7  Schematic illustration of the heterojunction between SrTiO3 and TiO2.
1 Z Xie, Y Feng, F Wang, et al.. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Applied Catalysis B: Environmental, 2018, 229: 96–104
https://doi.org/10.1016/j.apcatb.2018.02.011
2 Y Sang, Z Zhao, M Zhao, et al.. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Advanced Materials, 2015, 27(2): 363–369
https://doi.org/10.1002/adma.201403264 pmid: 25413166
3 S Dong, X Ding, T Guo, et al.. Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chemical Engineering Journal, 2017, 316: 778–789
https://doi.org/10.1016/j.cej.2017.02.017
4 Q Sun, N Wang, J Yu, et al.. A hollow porous CdS photocatalyst. Advanced Materials, 2018, 30(45): 1804368
https://doi.org/10.1002/adma.201804368 pmid: 30252958
5 R Shi, Y Cao, Y Bao, et al.. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Advanced Materials, 2017, 29(27): 1700803
https://doi.org/10.1002/adma.201700803 pmid: 28497896
6 R B Wei, Z L Huang, G H Gu, et al.. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 231: 101–107
https://doi.org/10.1016/j.apcatb.2018.03.014
7 M Zhou, S Wang, P Yang, et al.. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catalysis, 2018, 8(6): 4928–4936
https://doi.org/10.1021/acscatal.8b00104
8 J Jin, J Yu, D Guo, et al.. A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11(39): 5262–5271
https://doi.org/10.1002/smll.201500926 pmid: 26265014
9 M F Kuehnel, K L Orchard, K E Dalle, et al.. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. Journal of the American Chemical Society, 2017, 139(21): 7217–7223
https://doi.org/10.1021/jacs.7b00369 pmid: 28467076
10 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
11 P Zhang, L Yu, X W D Lou. Construction of heterostructured Fe2O3–TiO2 microdumbbells for photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2018, 57(46): 15076–15080
https://doi.org/10.1002/anie.201808104 pmid: 30247798
12 C Gao, T Wei, Y Zhang, et al.. A photoresponsive rutile TiO2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution. Advanced Materials, 2019, 31(8): 1806596 (6 pages)
https://doi.org/10.1002/adma.201806596 pmid: 30614566
13 O Elbanna, M Zhu, M Fujitsuka, et al.. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catalysis, 2019, 9(4): 3618–3626
https://doi.org/10.1021/acscatal.8b05081
14 Z Huang, Q Sun, K Lv, et al.. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Applied Catalysis B: Environmental, 2015, 164: 420–427
https://doi.org/10.1016/j.apcatb.2014.09.043
15 Y Wang, C Yang, A Chen, et al.. Influence of yolk–shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251: 57–65
https://doi.org/10.1016/j.apcatb.2019.03.056
16 S J Woo, S Choi, S Y Kim, et al.. Highly selective and durable photochemical CO2 reduction by molecular Mn(I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catalysis, 2019, 9(3): 2580–2593
https://doi.org/10.1021/acscatal.8b03816
17 H Xu, S Ouyang, L Liu, et al.. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 12642–12661
https://doi.org/10.1039/C4TA00941J
18 A Meng, J Zhang, D Xu, et al.. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Applied Catalysis B: Environmental, 2016, 198: 286–294
https://doi.org/10.1016/j.apcatb.2016.05.074
19 M Ge, Q Li, C Cao, et al.. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152
https://doi.org/10.1002/advs.201600152 pmid: 28105391
20 Q Lu, Z Lu, Y Lu, et al.. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano Letters, 2013, 13(11): 5698–5702
https://doi.org/10.1021/nl403430x pmid: 24164212
21 K Zhu, N R Neale, A Miedaner, et al.. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69–74
https://doi.org/10.1021/nl062000o pmid: 17212442
22 A Crake, K C Christoforidis, A Kafizas, et al.. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140
https://doi.org/10.1016/j.apcatb.2017.03.039
23 H Wang, H Liu, S Wang, et al.. Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-templating. Applied Catalysis B: Environmental, 2018, 224: 341–349
https://doi.org/10.1016/j.apcatb.2017.10.039
24 B O Burek, D W Bahnemann, J Z Bloh. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catalysis, 2019, 9(1): 25–37
https://doi.org/10.1021/acscatal.8b03638
25 A Miyoshi, J J M Vequizo, S Nishioka, et al.. Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting. Sustainable Energy & Fuels, 2018, 2(9): 2025–2035
https://doi.org/10.1039/C8SE00191J
26 K Wenderich, G Mul. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chemical Reviews, 2016, 116(23): 14587–14619
https://doi.org/10.1021/acs.chemrev.6b00327 pmid: 27960266
27 K Li, B Peng, T Peng. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 2016, 6(11): 7485–7527
https://doi.org/10.1021/acscatal.6b02089
28 M Reza Gholipour, C T Dinh, F Béland, et al.. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7(18): 8187–8208
https://doi.org/10.1039/C4NR07224C pmid: 25804291
29 W Wang, D Xu, B Cheng, et al.. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(10): 5020–5029
https://doi.org/10.1039/C6TA11121A
30 L Li, J Yan, T Wang, et al.. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881 (10 pages)
https://doi.org/10.1038/ncomms6881 pmid: 25562287
31 Y P Yuan, L W Ruan, J Barber, et al.. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy & Environmental Science, 2014, 7(12): 3934–3951
https://doi.org/10.1039/C4EE02914C
32 Y Xu, A Li, T Yao, et al.. Strategies for efficient charge separation and transfer in artificial photosynthesis of solar fuels. ChemSusChem, 2017, 10(22): 4277–4305
https://doi.org/10.1002/cssc.201701598 pmid: 29105988
33 S Chen, S S Thind, A Chen. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17
https://doi.org/10.1016/j.elecom.2015.12.003
34 Y Lu, X Cheng, G Tian, et al.. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy, 2018, 47: 8–17
https://doi.org/10.1016/j.nanoen.2018.02.021
35 J F Ge, Z L Liu, C Liu, et al.. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nature Materials, 2015, 14(3): 285–289
https://doi.org/10.1038/nmat4153 pmid: 25419814
36 L Mu, Y Zhao, A Li, et al.. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy & Environmental Science, 2016, 9(7): 2463–2469
https://doi.org/10.1039/C6EE00526H
37 Q Song, T L Yu, X Lou, et al.. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nature Communications, 2019, 10(1): 758
https://doi.org/10.1038/s41467-019-08560-z pmid: 30770805
38 X Lu, P Jiang, X Bao. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nature Communications, 2019, 10: 138
https://doi.org/10.1038/s41467-018-07860-0
39 L Ji, M D McDaniel, S Wang, et al.. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 2015, 10(1): 84–90
https://doi.org/10.1038/nnano.2014.277 pmid: 25437745
40 Y Wang, D Zhang, C Wen, et al.. Processing and characterization of SrTiO3–TiO2 nanoparticle–nanotube heterostructures on titanium for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(29): 16018–16026
https://doi.org/10.1021/acsami.5b04304 pmid: 26136139
41 Z Jiao, T Chen, J Xiong, et al.. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Scientific Reports, 2013, 3(1): 2720 PMID: 24056587
https://doi.org/10.1038/srep02720
42 Q Kang, T Wang, P Li, et al.. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angewandte Chemie International Edition, 2015, 54(3): 841–845
https://doi.org/10.1002/anie.201409183 pmid: 25422137
43 W Zhao, N Liu, H Wang, et al.. Sacrificial template synthesis of core–shell SrTiO3/TiO2 heterostructured microspheres photocatalyst. Ceramics International, 2017, 43(6): 4807–4813
https://doi.org/10.1016/j.ceramint.2016.12.009
44 T Cao, Y Li, C Wang, et al.. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6): 2946–2952
https://doi.org/10.1021/la104195v pmid: 21314166
45 J Zhang, J H Bang, C Tang, et al.. Tailored TiO2–SrTiO3 heterostructure nanotube arrays for improved photoelectroche-mical performance. ACS Nano, 2010, 4(1): 387–395
https://doi.org/10.1021/nn901087c pmid: 20000756
46 R P Vasquez. SrTiO3 by XPS. Surface Science Spectra, 1992, 1(1): 129–135
https://doi.org/10.1116/1.1247683
47 U Diebold, T E Madey. TiO2 by XPS. Surface Science Spectra, 1996, 4(3): 227–231
https://doi.org/10.1116/1.1247794
48 W Tu, Y Zhou, Z Zou. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626
https://doi.org/10.1002/adma.201400087 pmid: 24861670
49 T Xu, S Wang, L Li, et al.. Dual templated synthesis of tri-modal porous SrTiO3/TiO2@carbon composites with enhanced photocatalytic activity. Applied Catalysis A: General, 2019, 575: 132–141
https://doi.org/10.1016/j.apcata.2019.02.017
50 Y Wei, J Wang, R Yu, et al.. Constructing SrTiO3–TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angewandte Chemie International Edition, 2019, 58(5): 1422–1426
https://doi.org/10.1002/anie.201812364 pmid: 30548179
51 J Zhou, L Yin, K Zha, et al.. Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength. Applied Surface Science, 2016, 367: 118–125
https://doi.org/10.1016/j.apsusc.2016.01.096
52 K Wu, H Zhu, Z Liu, et al.. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. Journal of the American Chemical Society, 2012, 134(25): 10337–10340
https://doi.org/10.1021/ja303306u pmid: 22655858
53 J Yang, H Yan, X Wang, et al.. Roles of co-catalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290(6): 151–157
https://doi.org/10.1016/j.jcat.2012.03.008
54 K Wu, Z Chen, H Lv, et al.. Hole removal rate limits photodriven H2 generation efficiency in CdS–Pt and CdSe/CdS–Pt semiconductor nanorod-metal tip heterostructures. Journal of the American Chemical Society, 2014, 136(21): 7708–7716
https://doi.org/10.1021/ja5023893 pmid: 24798693
55 S Kumar, C M A Parlett, M A Isaacs, et al.. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Applied Catalysis B: Environmental, 2016, 189: 226–232
https://doi.org/10.1016/j.apcatb.2016.02.038
56 M Stylidi, D I Kondarides, X E Verykios. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47(3): 189–201
https://doi.org/10.1016/j.apcatb.2003.09.014
[1] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[2] Yugui WANG, Yajun JI, Qizhi TIAN. Size-constrained ultrathin BiOCl nanosheets@C composites with enhanced photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 275-285.
[3] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[4] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[5] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[6] Zhihong JING, Xiue LIU, Yan DU, Yuanchun HE, Tingjiang YAN, Wenliang WANG, Wenjuan LI. Synthesis, characterization, antibacterial and photocatalytic performance of Ag/AgI/TiO2 hollow sphere composites[J]. Front. Mater. Sci., 2020, 14(1): 1-13.
[7] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[8] Cuicui HU, Huanhuan ZHANG, Yanjun XING. Alkylamine-mediated synthesis and photocatalytic properties of ZnO[J]. Front. Mater. Sci., 2019, 13(1): 33-42.
[9] Yazi WANG, Wei LI, Yimeng FENG, Shasha LV, Mingyang LI, Zhengcao LI. Nitrogen ion irradiation effect on enhancing photocatalytic performance of CdTe/ZnO heterostructures[J]. Front. Mater. Sci., 2018, 12(4): 392-404.
[10] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[11] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[12] Xiaojun NIU, Jinling MA. Fabrication of Ag3PO4–AgBr–PTh composite loaded on Na2SiO3 with enhanced visible-light photocatalytic activity[J]. Front. Mater. Sci., 2018, 12(3): 264-272.
[13] Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants[J]. Front. Mater. Sci., 2017, 11(4): 375-384.
[14] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[15] Jun WU, Chentian SHI, Yupeng ZHANG, Qiang FU, Chunxu PAN. Photocatalytic mechanism of high-activity anatase TiO2 with exposed (001) facets from molecular-atomic scale: HRTEM and Raman studies[J]. Front. Mater. Sci., 2017, 11(4): 358-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed