Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 389-398    https://doi.org/10.1007/s11706-019-0480-1
RESEARCH ARTICLE
Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy
Kaushik DAS1, G. A. KUMAR2,3,4, Leonardo MIRANDOLA5, Maurizio CHIRIVA-INTERNATI5,6,7, Jharna CHAUDHURI1,7()
1. Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
2. Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
3. Department of Atomic and Molecular Physics, Manipal University, Manipal 576104, Karnataka, India
4. Department of Natural and Physical Sciences, Northwest Vista College, 3535 N Ellison Dr, San Antonio, TX 78251, USA
5. Kiromic BioPharma, 7707 Fannin St., Suite 140, Houston, TX 77054, USA
6. Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
7. Department of Mechanical and Materials Engineering, PO Box 751, Portland State University, Portland, OR 97207-0751, USA
 Download: PDF(1882 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Upconversion nanoparticles (UC NPs) in combination with plasmonic materials have great potential for cancer photothermal therapy. Recently, sodium holmium fluoride (NaHoF4) is being investigated for luminescence and magnetic resonance imaging (MRI) contrast agent. Here, we present successful synthesis of excellent quality doped NaHoF4 NPs for possible UC luminescence application and coated for possible photothermal therapy application. Synthesized NaHoF4 nanocrystals were doped with Yb/Er and coated with gold, gold/silica, silver and polypyrrole (PPy). XRD, XPS and TEM were used to determine structure and morphology of the NPs. Strong UC photoluminescence (PL) emission spectra were obtained from the NPs when excited by near-infrared (NIR) light at 980 nm. Cell viability and toxicity of the NPs were characterized using pancreatic and ovarian cancer cells with results showing that gold/silica coating produced least toxicity followed by gold coating.

Keywords photothermal therapy      upconversion      photoluminescence      nanoparticle      sodium holmium fluoride     
Corresponding Author(s): Jharna CHAUDHURI   
Online First Date: 15 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Kaushik DAS,G. A. KUMAR,Leonardo MIRANDOLA, et al. Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy[J]. Front. Mater. Sci., 2019, 13(4): 389-398.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0480-1
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/389
Fig.1  (a) TEM image of gold-decorated NaHoF4:Yb3+,Er3+ NPs. (b) HRTEM image showing the d spacing of NaHoF4:Yb3+,Er3+ NPs. (c) HRTEM image showing the d spacing of gold NPs. (d) SAED pattern of gold NaHoF4:Yb3+,Er3+ NPs.
Fig.2  (a) TEM image of gold-decorated silica-coated NaHoF4:Yb3+,Er3+ NPs with the silica coating and gold particles marked. (b) HRTEM image showing the d spacing of gold. (c) HRTEM image showing the d spacing of gold NaHoF4:Yb3+,Er3+ NPs. (d) SAED pattern of gold and NaHoF4:Yb3+,Er3+ NPs.
Fig.3  (a) TEM image of silver-decorated NaHoF4:Yb3+,Er3+ NPs showing silver NPs. (b) HRTEM image of NaHoF4:Yb3+,Er3+@Ag NPs. HRTEM images showing (c) the d spacing of NaHoF4:Yb3+,Er3+@Ag and (d) the d spacing of silver.
Fig.4  SEM image of NaHoF4:Yb3+,Er3+@PPy core–shell NPs.
Fig.5  (a) TEM image of NaHoF4:Yb3+,Er3+/PPy core–shell NPs and (b) HRTEM image of a NaHoF4:Yb3+,Er3+/PPy NP.
Fig.6  EDX spectra of gold-decorated NaHoF4:Yb3+,Er3+/SiO2@Au NPs.
Fig.7  XRD patterns of (a) gold-decorated NaHoF4:Yb3+,Er3+ NPs, (b) gold-decorated NaHoF4:Yb3+,Er3+/SiO2 NPs, (c) silver-decorated NaHoF4:Yb3+,Er3+ NPs, and (d) NaHoF4:Yb3+,Er3+/PPy NPs.
Fig.8  The XPS result of NaHoF4:Yb3+,Er3+/SiO2@Au NPs.
Fig.9  PL emission spectra: (a) NaHoF4:Yb3+,Er3+ and NaHoF4:Yb3+,Er3+@Au NPs; (b) NaHoF4:Yb3+,Er3+ and NaHoF4:Yb3+,Er3+/SiO2@Au NPs; (c) NaHoF4:Yb3+,Er3+ and NaHoF4:Yb3+,Er3+@Ag NPs; (d) NaHoF4:Yb3+,Er3+ and NaHoF4:Yb3+,Er3+@PPy NPs.
Fig.10  Percent cell viability of NaHoF4:Yb3+,Er3+/SiO2@Au, NaHoF4:Yb3+,Er3+@Au, NaHoF4:Yb3+,Er3+@Ag and NaHoF4:Yb3+,Er3+/PPy for pancreatic and ovarian cancer cells.
1 L Labrador-Páez, E C Ximendes, P Rodríguez-Sevilla, et al.. Core‒shell rare-earth-doped nanostructures in biomedicine. Nanoscale, 2018, 10(27): 12935–12956
https://doi.org/10.1039/C8NR02307G pmid: 29953157
2 M Tan, B Del Rosal, Y Zhang, et al.. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale, 2018, 10(37): 17771–17780
https://doi.org/10.1039/C8NR02382D pmid: 30215442
3 J Zhou, Q Liu, W Feng, et al.. Upconversion luminescent materials: advances and applications. Chemical Reviews, 2015, 115(1): 395–465
https://doi.org/10.1021/cr400478f pmid: 25492128
4 S Gai, C Li, P Yang, et al.. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chemical Reviews, 2014, 114(4): 2343–2389
https://doi.org/10.1021/cr4001594 pmid: 24344724
5 Y Liu, D Tu, H Zhu, et al.. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chemical Society Reviews, 2013, 42(16): 6924–6958
https://doi.org/10.1039/c3cs60060b pmid: 23775339
6 M Haase, H Schäfer. Upconverting nanoparticles. Angewandte Chemie International Edition, 2011, 50(26): 5808–5829
https://doi.org/10.1002/anie.201005159 pmid: 21626614
7 D Xu, C Liu, J Yan, et al.. Understanding energy transfer mechanisms for tunable emission of Yb3+‒Er3+ co-doped GdF3 NPs: concentration dependent luminescence by near-infrared and violet excitation. The Journal of Physical Chemistry C, 2015, 119(12): 6852–6860
https://doi.org/10.1021/acs.jpcc.5b00882
8 L D Sun, Y F Wang, C H Yan. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Accounts of Chemical Research, 2014, 47(4): 1001–1009
https://doi.org/10.1021/ar400218t pmid: 24422455
9 L Cheng, K Yang, M Shao, et al.. Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer. The Journal of Physical Chemistry C, 2011, 115(6): 2686–2692
https://doi.org/10.1021/jp111006z
10 R Qiao, C Liu, M Liu, et al.. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano, 2015, 9(2): 2120–2129
https://doi.org/10.1021/nn507433p pmid: 25602117
11 H Guo, N Dong, M Yin, et al.. Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. The Journal of Physical Chemistry B, 2004, 108(50): 19205–19209
https://doi.org/10.1021/jp048072q
12 G Gao, C Zhang, Z Zhou, et al.. One-pot hydrothermal synthesis of lanthanide ions doped one-dimensional upconversion submicrocrystals and their potential application in vivo CT imaging. Nanoscale, 2013, 5(1): 351–362
https://doi.org/10.1039/C2NR32850J pmid: 23168841
13 Y Wang, W Xu, Y Zhu, et al.. Phonon-modulated upconversion luminescence properties in some Er3+ and Yb3+ co-activated oxides. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(23): 4642–4650
https://doi.org/10.1039/c4tc00330f
14 C W Chen, P H Lee, Y C Chan, et al.. Plasmon-induced hyperthermia: hybrid upconversion NaYF4:Yb/Er and gold nanomarterials for oral cancer photothermal therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(42): 8293–8302
https://doi.org/10.1039/C5TB01393C
15 Y Song, G Liu, X Dong, et al.. Au nanorods@NaGdF4/Yb3+, Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magnetism, and photothermal property. The Journal of Physical Chemistry C, 2015, 119(32): 18527–18536
https://doi.org/10.1021/acs.jpcc.5b06099
16 D Li, Q Shao, Y Dong, et al.. Multifunctional NaYF4:Yb3+, Er3+@Au nanocomposites: upconversion luminescence, temperature sensing and photothermal therapy. Advanced Materials Research, 2015, 1088: 23–27
https://doi.org/10.4028/www.scientific.net/AMR.1088.23
17 S Shen, H Tang, X Zhang, et al.. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials, 2013, 34(12): 3150–3158
https://doi.org/10.1016/j.biomaterials.2013.01.051 pmid: 23369218
18 L P Qian, L H Zhou, H P Too, et al.. Gold decorated NaYF4: Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells. Journal of Nanoparticle Research, 2011, 13(2): 499–510
https://doi.org/10.1007/s11051-010-0080-6
19 Y Sun, B Wiley, Z Y Li, et al.. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. Journal of the American Chemical Society, 2004, 126(30): 9399–9406
https://doi.org/10.1021/ja048789r pmid: 15281832
20 J Sui, Z Chen, G Liu, et al.. Multifunctional Ag@NaGdF4:Yb3+, Er3+ core‒shell nanocomposites for dual-mode imaging and photothermal therapy. Journal of Luminescence, 2019, 209: 357–364
https://doi.org/10.1016/j.jlumin.2019.01.046
21 B Dong, S Xu, J Sun, et al.. Multifunctional NaYF4: Yb3+, Er3+@Ag core/shell nanocomposites: integration of upconversion imaging and photothermal therapy. Journal of Materials Chemistry, 2011, 21(17): 6193–6200
https://doi.org/10.1039/c0jm04498a
22 X Huang, B Li, C Peng, et al.. NaYF4:Yb/Er@PPy core‒shell nanoplates: an imaging-guided multimodal platform for photothermal therapy of cancers. Nanoscale, 2016, 8(2): 1040–1048
https://doi.org/10.1039/C5NR06394A pmid: 26660033
23 K Yang, H Xu, L Cheng, et al.. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Advanced Materials, 2012, 24(41): 5586–5592
https://doi.org/10.1002/adma.201202625 pmid: 22907876
24 M Chen, X Fang, S Tang, et al.. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chemical Communications, 2012, 48(71): 8934–8936
https://doi.org/10.1039/c2cc34463g pmid: 22847451
25 Z Zha, X Yue, Q Ren, et al.. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced Materials, 2013, 25(5): 777–782
https://doi.org/10.1002/adma.201202211 pmid: 23143782
26 M Norek, J A Peters. MRI contrast agents based on dysprosium or holmium. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 59(1): 64–82
https://doi.org/10.1016/j.pnmrs.2010.08.002 pmid: 21600356
27 D C Yu, X Y Huang, S Ye, et al.. A sequential two-step near-infrared quantum splitting in Ho3+ singly doped NaYF4. AIP Advances, 2011, 1(4): 042161
https://doi.org/10.1063/1.3666981
28 Z Sun, C Bai, S Zheng, et al.. A comparative study of different porous amorphous silica minerals supported TiO2 catalysts. Applied Catalysis A: General, 2013, 458: 103–110
https://doi.org/10.1016/j.apcata.2013.03.035
29 P H Citrin, G K Wertheim, Y Baer. Core-level binding energy and density of states from the surface atoms of gold. Physical Review Letters, 1978, 41(20): 1425–1428
https://doi.org/10.1103/PhysRevLett.41.1425
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[3] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[4] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[5] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[6] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[7] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[8] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[9] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[10] Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity[J]. Front. Mater. Sci., 2020, 14(1): 24-32.
[11] Qin LI, Min XING, Lan CHANG, Linlin MA, Zhi CHEN, Jianrong QIU, Jianding YU, Jiang CHANG. Upconversion luminescence Ca--Mg--Si bioactive glasses synthesized using the containerless processing technique[J]. Front. Mater. Sci., 2019, 13(4): 399-409.
[12] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[13] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[14] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[15] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed