Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 335-341    https://doi.org/10.1007/s11706-019-0482-z
MINI-REVIEW
Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives
Timur Sh. ATABAEV(), Anara MOLKENOVA
Department of Chemistry, School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
 Download: PDF(1258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Upconversion (UC) lanthanide nanomaterials have attracted enormous attention in the last two decades thanks to their unique ability to convert low-energy infrared photons into high-energy photons. In this mini-review, we briefly discussed the recent achievements related to the direct utilization of UC optical nanomaterials for photocatalysis and photovoltaic applications. In particular, selected examples of UC-containing devices/nanocomposites with improved performance were covered. In addition, we outlined some challenges and future trends associated with the widespread usage of UC nanomaterials.

Keywords upconversion process      nanoparticle      luminescence      photocatalysis      photovoltaics     
Corresponding Author(s): Timur Sh. ATABAEV   
Online First Date: 15 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Timur Sh. ATABAEV,Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0482-z
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/335
Fig.1  UC processes in (a) NaYF4:Yb3+,Er3+ and (b) NaYF4:Yb3+,Tm3+ nanophosphors under 976 nm excitation. Solid, dotted and wavy arrows indicate the absorption or emission, energy transfer and relaxation processes, respectively. Reproduced with permission from Ref. [9].
Fig.2  (a) Digital images of UC emission from Gd2O3:Yb3+/Tm3+, Gd2O3:Yb3+/Ho3+ and Gd2O3:Yb3+/Er3+. (b) Corresponding UC emission curves measured at room temperature. Reproduced with permission from Ref. [10].
Fig.3  (a) Synthesis procedure and (b)(c)(d) TEM+ HRTEM images of NYF@TiO2–Au photocatalyst. Reproduced with permission from Ref. [31].
Fig.4  A proposed enhancement mechanism based on UC materials. Reproduced with permission from Ref. [38].
Fig.5  (a) Cross-sectional image of PSCs and (b) corresponding JV characteristics. Position of UC nanoparticles denoted as UCNPs. Reproduced with permission from Ref. [49].
1 F Auzel. Upconversion and anti-Stokes processes with f and d ions in solids. Chemical Reviews, 2004, 104(1): 139–174
https://doi.org/10.1021/cr020357g pmid: 14719973
2 Y Yu, T Huang, Y Wu, et al.. In-vitro and in-vivo imaging of prostate tumor using NaYF4: Yb, Er up-converting nanoparticles. Pathology Oncology Research, 2014, 20(2): 335–341
https://doi.org/10.1007/s12253-013-9700-7 pmid: 24234861
3 M V DaCosta, S Doughan, Y Han, et al.. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Analytica Chimica Acta, 2014, 832: 1–33
https://doi.org/10.1016/j.aca.2014.04.030 pmid: 24890691
4 S Wang, J Feng, S Song, et al.. Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. CrystEngComm, 2013, 15(36): 7142–7151
https://doi.org/10.1039/c3ce40679b
5 R Ni, B Qian, C Liu, et al.. 3D printing of resin composites doped with upconversion nanoparticles for anti-counterfeiting and temperature detection. Optics Express, 2018, 26(19): 25481–25491
https://doi.org/10.1364/OE.26.025481 pmid: 30469649
6 M H Alkahtani, C L Gomes, P R Hemmer. Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing. Optics Letters, 2017, 42(13): 2451–2454
https://doi.org/10.1364/OL.42.002451 pmid: 28957257
7 X Ma, X Ni. Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell. Journal of Nanoparticle Research, 2013, 15(4): 1547
https://doi.org/10.1007/s11051-013-1547-z
8 J C Goldschmidt, S Fischer. Upconversion for photovoltaics — a review of materials, devices, and concepts for performance enhancement. Advanced Optical Materials, 2015, 3(4): 510–535
https://doi.org/10.1002/adom.201500024
9 R Arppe, I Hyppänen, N Perälä, et al.. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: the role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale, 2015, 7(27): 11746–11757
https://doi.org/10.1039/C5NR02100F pmid: 26104183
10 J Liu, L Huang, X M Tian, et al.. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy. International Journal of Nanomedicine, 2017, 12: 1–14
https://doi.org/10.2147/IJN.S118938 pmid: 28031709
11 J Chen, J X Zhao. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors, 2012, 12(3): 2414–2435
https://doi.org/10.3390/s120302414 pmid: 22736958
12 J Zhou, Q Liu, W Feng, et al.. Upconversion luminescent materials: advances and applications. Chemical Reviews, 2015, 115(1): 395–465
https://doi.org/10.1021/cr400478f pmid: 25492128
13 E L Payrer, A L Joudrier, P Aschehoug, et al.. Up-conversion luminescence in Er/Yb-doped YF3 thin films deposited by PLI-MOCVD. Journal of Luminescence, 2017, 187: 247–254
https://doi.org/10.1016/j.jlumin.2017.02.051
14 S Liu, G De, Y Xu, et al.. Size, phase-controlled synthesis, the nucleation and growth mechanisms of NaYF4:Yb/Er nanocrystals. Journal of Rare Earths, 2018, 36(10): 1060–1066
https://doi.org/10.1016/j.jre.2018.01.025
15 H Kobayashi, K Fujii, T Nunokawa, et al.. Surface modification of Y2O3:Er,Yb upconversion nanoparticles prepared by laser ablation in water. Japanese Journal of Applied Physics, 2014, 53(5S1): 05FK04
https://doi.org/10.7567/JJAP.53.05FK04
16 H H T Vu, T S Atabaev, N D Nguyen, et al.. Luminescent core–shell Fe3O4@Gd2O3:Er3+, Li+ composite particles with enhanced optical properties. Journal of Sol-Gel Science and Technology, 2014, 71(3): 391–395
https://doi.org/10.1007/s10971-014-3382-9
17 F Rivera-Lopez, V Lavin. Upconversion/back-transfer losses and emission dynamics in Nd3+–Yb3+ co-doped phosphate glasses for multiple pump channel laser. Journal of Non-Crystalline Solids, 2018, 489: 84–90
https://doi.org/10.1016/j.jnoncrysol.2018.03.007
18 E Cavalli, F Angiuli, A Belletti, et al.. Luminescence spectroscopy of YVO4:Ln3+, Bi3+ (Ln3+ = Eu3+, Sm3+, Dy3+) phosphors. Optical Materials, 2014, 36(10): 1642–1648
https://doi.org/10.1016/j.optmat.2013.12.020
19 Q Lü, A Li, F Guo, et al.. The two-photon excitation of SiO2-coated Y2O3:Eu3+ nanoparticles by a near-infrared femtosecond laser. Nanotechnology, 2008, 19(20): 205704
https://doi.org/10.1088/0957-4484/19/20/205704 pmid: 21825747
20 J Dong, W Gao, Q Han, et al.. Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Reviews in Physics, 2019, 4: 100026
https://doi.org/10.1016/j.revip.2018.100026
21 H Zong, X Mu, M Sun. Physical principle and advances in plasmon-enhanced upconversion luminescence. Applied Materials Today, 2019, 15: 43–57
https://doi.org/10.1016/j.apmt.2018.12.015
22 D Kumar, S Verma, V Sharma, et al.. Synthesis, characterization and upconversion luminescence of core–shell nanocomposites NaYF4:Yb/Er@SiO2@Ag/Au. Vacuum, 2018, 157: 492–496
https://doi.org/10.1016/j.vacuum.2018.09.041
23 G Chen, H Liu, H Liang, et al.. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. The Journal of Physical Chemistry C, 2008, 112(31): 12030–12036
https://doi.org/10.1021/jp804064g
24 Y Bai, Y Wang, G Peng, et al.. Enhance upconversion photoluminescence intensity by doping Li+ in Ho3+ and Yb3+ codoped Y2O3 nanocrystals. Journal of Alloys and Compounds, 2009, 478(1–2): 676–678
https://doi.org/10.1016/j.jallcom.2008.11.114
25 T S Atabaev, Z Piao, Y H Hwang, et al.. Bifunctional Gd2O3:Er3+ particles with enhanced visible upconversion luminescence. Journal of Alloys and Compounds, 2013, 572: 113–117
https://doi.org/10.1016/j.jallcom.2013.03.249
26 M L Debasu, J C Riedl, J Rocha, et al.. The role of Li+ in the upconversion emission enhancement of (YYbEr)2O3 nanoparticles. Nanoscale, 2018, 10(33): 15799–15808
https://doi.org/10.1039/C8NR03608J pmid: 30101238
27 Q Tian, W Yao, W Wu, et al.. NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horizons, 2019, 4(1): 10–25
https://doi.org/10.1039/C8NH00154E
28 C Byrne, G Subramanian, S C Pillai. Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 2018, 6(3): 3531–3555
https://doi.org/10.1016/j.jece.2017.07.080
29 Q L Ye, X Yang, C Li, et al.. Synthesis of UV/NIR photocatalysts by coating TiO2 shell on peanut-like YF3:Yb,Tm upconversion nanocrystals. Materials Letters, 2013, 106: 238–241
https://doi.org/10.1016/j.matlet.2013.05.047
30 Z Chen, M L Fu. Recyclable magnetic Fe3O4@SiO2@β-NaYF4:Yb3+,Tm3+/TiO2 composites with NIR enhanced photocatalytic activity. Materials Research Bulletin, 2018, 107: 194–203
https://doi.org/10.1016/j.materresbull.2018.07.016
31 Z Xu, M Quintanilla, F Vetrone, et al.. Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Advanced Functional Materials, 2015, 25(20): 2950–2960
https://doi.org/10.1002/adfm.201500810
32 Q Tian, W Yao, W Wu, et al.. Efficient UV-Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10889–10899
https://doi.org/10.1021/acssuschemeng.7b02806
33 T S Atabaev. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends. Frontiers of Materials Science, 2018, 12(3): 207–213
https://doi.org/10.1007/s11706-018-0413-4
34 M Zhang, Y Lin, T J Mullen, et al.. Improving hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. The Journal of Physical Chemistry Letters, 2012, 3(21): 3188–3192
https://doi.org/10.1021/jz301444a pmid: 26296027
35 T S Atabaev, H H T Vu, M Ajmal, et al.. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377
https://doi.org/10.1007/s00339-015-9108-1
36 F Gonell, M Haro, R S Sanchez, et al.. Photon up-conversion with lanthanide-doped oxide particles for solar H2 generation. The Journal of Physical Chemistry C, 2014, 118(21): 11279–11284
https://doi.org/10.1021/jp503743e
37 T N T Thuy, T S Atabaev, H H T Vu, et al.. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17(10): 7647–7650
https://doi.org/10.1166/jnn.2017.14772
38 W Yang, X Li, D Chi, et al.. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis. Nanotechnology, 2014, 25(48): 482001
https://doi.org/10.1088/0957-4484/25/48/482001 pmid: 25397916
39 A Shalav, B S Richards, T Trupke, et al.. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Applied Physics Letters, 2005, 86(1): 013505 (3 pages)
https://doi.org/10.1063/1.1844592
40 G X Xie, J M Lin, J H Wu, et al.. Application of upconversion luminescence in dye-sensitized solar cells. Chinese Science Bulletin, 2011, 56(1): 96–101
https://doi.org/10.1007/s11434-010-4115-2
41 J Li, O Yin, L Zhao, et al.. Enhancing the photoelectric conversion efficiency of dye-sensitized solar cells using the upconversion luminescence materials Y2O3:Er3+ nanorods doped TiO2 photoanode. Materials Letters, 2018, 227: 209–212
https://doi.org/10.1016/j.matlet.2018.05.057
42 M J Lim, Y N Ko, Y C Kang, et al.. Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming TiO2 composite double layers with down/up converting phosphor dispersion. RSC Advances, 2014, 4(20): 10039–10042
https://doi.org/10.1039/c3ra47310d
43 H H T Vu, T S Atabaev, J Y Ahn, et al.. Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3(20): 11130–11136
https://doi.org/10.1039/C5TA02363G
44 H H T Vu, T S Atabaev, D Pham-Cong, et al.. TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells. Electrochimica Acta, 2016, 193: 166–171
https://doi.org/10.1016/j.electacta.2016.02.045
45 S Tombe, G Adam, H Heilbrunner, et al.. Optical and electronic properties of mixed halide (X= I, Cl, Br) methylammonium lead perovskite solar cells. Journal of Materials Chemistry C, 2017, 5(7): 1714–1723
https://doi.org/10.1039/C6TC04830G
46 F L Meng, J J Wu, E F Zhao, et al.. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals. Nanoscale, 2017, 9(46): 18535–18545
https://doi.org/10.1039/C7NR05416E pmid: 29164210
47 Q Guo, J Wu, Y Yang, et al.. High performance perovskite solar cells based on β-NaYF4:Yb3+/Er3+/Sc3+@NaYF4 core–shell upconversion nanoparticles. Journal of Power Sources, 2019, 426: 178–187
https://doi.org/10.1016/j.jpowsour.2019.04.039
48 M S Sebag, Z Hu, K O Lima, et al.. Microscopic evidence of upconversion-induced near-infrared light harvest in hybrid perovskite solar cells. ACS Applied Energy Materials, 2018, 1(8): 3537–3543
https://doi.org/10.1021/acsaem.8b00518
49 D Ma, Y Shen, T Su, et al.. Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Materials Chemistry Frontiers, 2019, 3(10): 2058–2065
https://doi.org/10.1039/C9QM00311H
[1] Qingyang GU, Jinyan LI, Liangshuo JI, Ruijun JU, Haibo JIN, Rongyue ZHANG. Fabrication of novel bifunctional nanohybrid based on layered rare-earth hydroxide with magnetic and fluorescent properties[J]. Front. Mater. Sci., 2020, 14(4): 488-496.
[2] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[3] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[4] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[5] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[6] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[7] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[8] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[9] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[10] Dong ZHANG, Jingxin CHEN, Chunyu DU, Bingjun ZHU, Qingru WANG, Qiang SHI, Shouxin CUI, Wenjun WANG. Enhancement of red emission assigned to inversion defects in ZnAl2O4:Cr3+ hollow spheres[J]. Front. Mater. Sci., 2020, 14(1): 73-80.
[11] Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity[J]. Front. Mater. Sci., 2020, 14(1): 24-32.
[12] Kaushik DAS, G. A. KUMAR, Leonardo MIRANDOLA, Maurizio CHIRIVA-INTERNATI, Jharna CHAUDHURI. Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy[J]. Front. Mater. Sci., 2019, 13(4): 389-398.
[13] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[14] Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics[J]. Front. Mater. Sci., 2019, 13(1): 99-106.
[15] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed