Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 367-374    https://doi.org/10.1007/s11706-019-0483-y
RESEARCH ARTICLE
Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries
Yanlin JIA1,2, Zhiyuan MA1, Zhicheng LI1, Zhenli HE1, Junming SHAO1, Hong ZHANG1()
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
 Download: PDF(2052 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Despite the high specific capacities, the practical application of transition metal oxides as the lithium ion battery (LIB) anode is hindered by their low cycling stability, severe polarization, low initial coulombic efficiency, etc. Here, we report the synthesis of the NiO/Ni2N nanocomposite thin film by reactive magnetron sputtering with a Ni metal target in an atmosphere of 1 vol.% O2 and 99 vol.% N2. The existence of homogeneously dispersed nano Ni2N phase not only improves charge transfer kinetics, but also contributes to the one-off formation of a stable solid electrolyte interphase (SEI). In comparison with the NiO electrode, the NiO/Ni2N electrode exhibits significantly enhanced cycling stability with retention rate of 98.8% (85.6% for the NiO electrode) after 50 cycles, initial coulombic efficiency of 76.6% (65.0% for the NiO electrode) and rate capability with 515.3 mA·h·g−1 (340.1 mA·h·g−1 for the NiO electrode) at 1.6 A·g−1.

Keywords NiO and Ni2N      nanocomposite      reactive magnetron sputtering      lithium ion battery      electrode      electrochemical performance     
Corresponding Author(s): Hong ZHANG   
Online First Date: 22 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Yanlin JIA,Zhiyuan MA,Zhicheng LI, et al. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0483-y
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/367
Fig.1  XRD patterns of the thin films deposited at different N2/O2 ratios: (a) 20 vol.% O2; (b) 1 vol.% O2. Insets are enlarged pictures of NiO (2 0 0) diffraction.
Fig.2  SEM observations: (a) surface morphology of bare Cu foil; (b) surface morphology of NiO thin film; (c) cross-section of NiO thin film; (d) surface morphology of NiO/Ni2N composite thin film; (e) cross-section of NiO/Ni2N composite thin film. (f) EDX mapping of NiO/Ni2N composite thin film.
Fig.3  CV results at a scanning speed of 0.1 mV·s−1: (a) NiO electrode; (b) NiO/Ni2N electrode.
Fig.4  Galvonostatic charge/discharge performance of NiO/Ni2N and NiO electrodes at 0.3 A·g−1: (a) charge/discharge profiles of the NiO electrode; (b) charge/discharge profiles of the NiO/Ni2N electrode; (c) comparison of initial discharge plateaus of the two electrodes; (d) comparison of cycling performance of the two electrodes.
Fig.5  Comparison of rate performance of NiO/Ni2N and NiO electrodes.
Fig.6  Nyquist plots of NiO/Ni2N and NiO electrodes before and after 50 cycles.
Fig.7  Electrode SEM images after 50 cycles of discharge/charge test at 0.3 A·g−1: (a) the NiO/Ni2N composite electrode; (b) the NiO electrode.
  Fig. S1 SEM-EDS spectrum of the as-prepared NiO/Ni2N thin film on copper foil.
  Fig. S2 Galvonostatic discharge/charge profiles of NiO/Ni2N and NiO electrodes at 0.3 A·g−1 in the 20th cycle.
  Fig. S3 Coulombic efficiencies of (a) NiO/Ni2N and (b) NiO electrodes at 0.3 A·g−1.
1 P Poizot, S Laruelle, S Grugeon, et al.. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499
https://doi.org/10.1038/35035045 pmid: 11028997
2 M V Reddy, G V Subba Rao, B V R Chowdari. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews, 2013, 113(7): 5364–5457
https://doi.org/10.1021/cr3001884 pmid: 23548181
3 H Liu, G Wang, J Liu, et al.. Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance. Journal of Materials Chemistry, 2011, 21(9): 3046–3052
https://doi.org/10.1039/c0jm03132a
4 X Ma, N Wang, Y Qian, et al.. Large-scale synthesis of NiO polyhedron nanocrystals as high-performance anode materials for lithium ion batteries. Materials Letters, 2016, 168: 5–8
https://doi.org/10.1016/j.matlet.2016.01.019
5 C Wang, Y Zhao, D Su, et al.. Synthesis of NiO nano octahedron aggregates as high-performance anode materials for lithium ion batteries. Electrochimica Acta, 2017, 231: 272–278
https://doi.org/10.1016/j.electacta.2017.02.061
6 Z Ma, H Zhang, Y Zhang, et al.. Electrochemical characteristics of nanostructured NiO plates hydrothermally treated on nickel foam for Li-ion storage. Electrochimica Acta, 2015, 176: 1427–1433
https://doi.org/10.1016/j.electacta.2015.07.161
7 V Soundharrajan, B Sambandam, J Song, et al.. Metal organic framework-combustion: A one-pot strategy to NiO nanoparticles with excellent anode properties for lithium ion batteries. Journal of Energy Chemistry, 2018, 27(1): 300–305
https://doi.org/10.1016/j.jechem.2017.05.003
8 P Lv, H Zhao, Z Zeng, et al.. Self-assembled three-dimensional hierarchical NiO nano/microspheres as high-performance anode material for lithium ion batteries. Applied Surface Science, 2015, 329: 301–305
https://doi.org/10.1016/j.apsusc.2014.12.170
9 S Hao, B Zhang, S Ball, et al.. Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Materials & Design, 2016, 92: 160–165
https://doi.org/10.1016/j.matdes.2015.12.002
10 Y Zheng, Y Li, J Yao, et al.. Facile synthesis of porous tubular NiO with considerable pseudocapacitance as high capacity and long life anode for lithium-ion batteries. Ceramics International, 2018, 44(2): 2568–2577
https://doi.org/10.1016/j.ceramint.2017.11.017
11 N Feng, X Sun, H Yue, et al.. Rational design of hierarchical Ni embedded NiO hybrid nanospheres for high-performance lithium-ion batteries. RSC Advances, 2016, 6(76): 72008–72014
https://doi.org/10.1039/C6RA12846G
12 Q Li, Z Yi, Y Cheng, et al.. Microwave-assisted synthesis of the sandwich-like porous Al2O3/RGO nanosheets anchoring NiO nanocomposite as anode materials for lithium-ion batteries. Applied Surface Science, 2018, 427: 354–362
https://doi.org/10.1016/j.apsusc.2017.08.052
13 W Shi, Y Zhang, J Key, et al.. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material. Journal of Power Sources, 2018, 379: 362–370
https://doi.org/10.1016/j.jpowsour.2018.01.025
14 Q Zheng, Y Liu, H Guo, et al.. Synthesis of hierarchical 1D NiO assisted by microwave as anode material for lithium-ion batteries. Materials Research Bulletin, 2018, 98: 155–159
https://doi.org/10.1016/j.materresbull.2017.10.017
15 Y Li, Y Zheng, J Yao, et al.. Facile synthesis of nanocrystalline-assembled nest-like NiO hollow microspheres with superior lithium storage performance. RSC Advances, 2017, 7(50): 31287–31297
https://doi.org/10.1039/C7RA05373H
16 P Verma, P Maire, P Novák. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010, 55(22): 6332–6341
https://doi.org/10.1016/j.electacta.2010.05.072
17 C K Chan, H Peng, G Liu, et al.. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
https://doi.org/10.1038/nnano.2007.411 pmid: 18654447
18 Z Ma, H Zhang, X Sun, et al.. Preparation and characterization of nanostructured Ni2N thin film as electrode for lithium ion storage. Applied Surface Science, 2017, 420: 196–204
https://doi.org/10.1016/j.apsusc.2017.05.139
19 U Holzwarth, N Gibson. The Scherrer equation versus the ‘Debye‒Scherrer equation’. Nature Nanotechnology, 2011, 6(9): 534
https://doi.org/10.1038/nnano.2011.145 pmid: 21873991
20 H Nishihara, K Suzuki, R Y Umetsu, et al.. Magnetic properties of Ni2N. Physica B, 2014, 449: 85–89
https://doi.org/10.1016/j.physb.2014.05.016
21 W Li, G Wu, C M Araújo, et al.. Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy & Environmental Science, 2010, 3(10): 1524–1530
https://doi.org/10.1039/c0ee00052c
22 D M Seo, C C Nguyen, B T Young, et al.. Characterizing solid electrolyte interphase on Sn anode in lithium ion battery. Journal of the Electrochemical Society, 2015, 162(13): A7091–A7095
https://doi.org/10.1149/2.0121513jes
23 L Chen, K Wang, X Xie, et al.. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources, 2007, 174(2): 538–543
https://doi.org/10.1016/j.jpowsour.2007.06.149
24 M B Pinson, M Z Bazant. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. Journal of the Electrochemical Society, 2013, 160(2): A243–A250
https://doi.org/10.1149/2.044302jes
25 H Wu, M Xu, H Wu, et al.. Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. Journal of Materials Chemistry, 2012, 22(37): 19821–19825
https://doi.org/10.1039/c2jm34496c
26 Z Ma, Z Li, Y Zeng, et al.. High electrochemical performance of γ"-FeN thin film electrode for lithium ion batteries. Journal of Power Sources, 2019, 423: 159–165
https://doi.org/10.1016/j.jpowsour.2019.03.074
[1] Jingze ZHANG, Sheng ZHU, Yulin MIN, Qunjie XU. Mn-doped perovskite-type oxide LaFeO3 as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions[J]. Front. Mater. Sci., 2020, 14(4): 459-468.
[2] Dandan HAN, Jinhe WEI, Shanshan WANG, Yifan PAN, Junli XUE, Yen WEI. Feather-like NiCo2O4 self-assemble from porous nanowires as binder-free electrodes for low charge transfer resistance[J]. Front. Mater. Sci., 2020, 14(4): 450-458.
[3] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[4] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[5] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[6] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[7] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[8] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[9] Infant RAJ, Daniel KIGEN, Wang YANG, Fan YANG, Yongfeng LI. Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency[J]. Front. Mater. Sci., 2018, 12(4): 368-378.
[10] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[11] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[12] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[13] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[14] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[15] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed