Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (4) : 431-438    https://doi.org/10.1007/s11706-019-0485-9
RESEARCH ARTICLE
Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics
Lei TANG1, Tengfei LIU1, Jinxu MA1, Xiaowen ZHANG2, Linan AN3, Kepi CHEN1()
1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3. Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816, USA
 Download: PDF(1577 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lead-free (K0.5−x/2Na0.5−x/2Lix)(Nb0.8Ta0.2)O3 (KNLNT) and (K0.49−x/2Na0.49−x/2- LixCa0.01)(Nb0.8Ta0.2)O3 (KNLNT-Ca) ceramics were prepared by a conventional ceramic processing. Structural analysis shows that the Ca2+ doping takes the A site of ABO3 perovskite and decreases the phase transition temperature. Property measurements reveal that as a donor dopant, the Ca2+ doping results in higher room-temperature dielectric constant, lower dielectric loss, and lower mechanical quality factor. In addition, the Ca2+ doping does not change the positive piezoelectric coefficient d33, but increases the converse piezoelectric coefficient d33* significantly. This is likely due to the increase in the relaxation, as well as the appearance of (CaNa/K--VNa/K′) defect dipoles.

Keywords lead-free piezoelectric      KNN      converse piezoelectric coefficient      donor dopant      piezoelectric property      polymorphic phase transition     
Corresponding Author(s): Kepi CHEN   
Online First Date: 26 November 2019    Issue Date: 04 December 2019
 Cite this article:   
Lei TANG,Tengfei LIU,Jinxu MA, et al. Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics[J]. Front. Mater. Sci., 2019, 13(4): 431-438.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0485-9
https://academic.hep.com.cn/foms/EN/Y2019/V13/I4/431
Fig.1  (a) XRD patterns of KNLNT and KNLNT-Ca ceramics of different compositions as labeled, and (b) enlarged views of the patterns between 44.5° and 46.5°.
Fig.2  (a)(b)(c)(d)(e) Plots of dielectric constant versus temperature. (f) A plot of Curie temperature versus the Li+ concentration.
Fig.3  (a)(b)(c)(d)(e) Plots of ln(1/ϵ−1/ϵm) versus ln(TTC). (f) A plot of γ versus the Li+ content for KNLNT and KNLNT-Ca ceramics.
Fig.4  SEM images of (a) KNLNT ceramics sintered at 1100 °C and (b) KNLNT-Ca ceramics sintered at 1080 °C.
Fig.5  Plots of electrical properties of KNLNT and KNLNT-Ca ceramics as a function of the Li+ content.
Fig.6  (a)(b)(c)(d)(e)PE loops and (f) a plot of Pr versus the Li+ content for KNLNT and KNLNT-Ca ceramics.
Fig.7  Coercive field EC for KNLNT and KNLNT-Ca ceramics.
Fig.8  Electric field-induced strain in KKNLNT and KKNLNT-Ca ceramics.
Fig.9  Converse piezoelectric constant d33* as a function of the Li+ content.
1 B Jaffe, W R Cook, H Jaffe. Piezoelectric Ceramics. New York: Academic Press, 1971
2 K Uchino. Ferroelectric Devices. New York: CRC Press, 2009
3 J Tichy, J Erhart, E Kittinger, et al.. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer Press, 2010
4 M K Mishra, S Moharana, B Behera, et al.. Surface functionalization of BiFeO3: a pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films. Frontiers of Materials Science, 2017, 11(1): 82–91
https://doi.org/10.1007/s11706-017-0364-1
5 Y Saito, H Takao, T Tani, et al.. Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87
https://doi.org/10.1038/nature03028 pmid: 15516921
6 T R Shrout, S J Zhang. Lead-free piezoelectric ceramics: alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126
https://doi.org/10.1007/s10832-007-9047-0
7 J Rodel, W Jo, K T P Seifert, et al.. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177
https://doi.org/10.1111/j.1551-2916.2009.03061.x
8 J F Li, K Wang, F Y Zhu, et al.. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696
https://doi.org/10.1111/jace.12715
9 J Rodel, K G Webber, R Dittmer, et al.. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681
https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
10 Z Tan, J Xing, L Jiang, et al.. Ga2O3 doping and vacancy effect in KNN–LT lead-free piezoceramics. Frontiers of Materials Science, 2017, 11(4): 344–352
https://doi.org/10.1007/s11706-017-0403-y
11 K Chen, Y Jiao. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Frontiers of Materials Science, 2017, 11(1): 59–65
https://doi.org/10.1007/s11706-017-0371-2
12 J Wu, D Xiao, J Zhu. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595
https://doi.org/10.1021/cr5006809 PMID:25792114
13 S J Zhang, H J Lee, C Ma, et al.. Sintering effect on microstructure and properties of (K, Na)NbO3 ceramics. Journal of the American Ceramic Society, 2011, 94(11): 3659–3665
https://doi.org/10.1111/j.1551-2916.2011.04833.x
14 Y P Guo, K Kakimoto, H Ohsato. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Applied Physics Letters, 2004, 85(18): 4121–4123
https://doi.org/10.1063/1.1813636
15 Y P Guo, K i Kakimoto, H Ohsato. (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 2005, 59(2–3): 241–244
https://doi.org/10.1016/j.matlet.2004.07.057
16 Y Dai, X Zhang, G Zhou. Phase transitional behavior in (Na0.5K0.5)NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903
https://doi.org/10.1063/1.2751607
17 S Zhang, R Xia, T R Shrout. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Applied Physics Letters, 2007, 91(13): 132913
https://doi.org/10.1063/1.2794400
18 J G Wu, D Q Xiao, Y Y Wang, et al.. Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2008, 104(2): 024102
https://doi.org/10.1063/1.2956390
19 Y F Chang, S Poterala, Z P Yang, et al.. Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. Journal of the American Ceramic Society, 2011, 94(8): 2494–2498
https://doi.org/10.1111/j.1551-2916.2011.04393.x
20 M H Zhang, K Wang, J S Zhou, et al.. Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Materialia, 2017, 122: 344–351
https://doi.org/10.1016/j.actamat.2016.10.011
21 D Damjanovic. Hysteresis in piezoelectric and ferroelectric materials. In: Bertotti G, Mayergoyz I D, eds. The Science of Hysteresis. Elsevier, 2005, 337–465
22 T Zheng, J Wu, D Xiao, et al.. Giant d33 in nonstoichiometric (K, Na)NbO3-based lead-free ceramics. Scripta Materialia, 2015, 94: 25–27
https://doi.org/10.1016/j.scriptamat.2014.09.008
23 L Jiang, Y Li, J Xing, et al.. Phase structure and enhanced piezoelectric properties in (1−x)(K0.48Na0.52)(Nb0.95Sb0.05)O3–x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics. Ceramics International, 2017, 43(2): 2100–2106
https://doi.org/10.1016/j.ceramint.2016.10.189
24 K T Lee, T G Lee, S W Kim, et al.. Thermally stable high strain and piezoelectric characteristics of (Li, Na, K)(Nb, Sb)O3-CaZrO3 ceramics for piezo actuators. Journal of the American Ceramic Society, 2019, 102(10): 6115–6125
https://doi.org/10.1111/jace.16503
25 J Hao, W Li, J Zhai, et al.. Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering R: Reports, 2019, 135: 1–57
https://doi.org/10.1016/j.mser.2018.08.001
26 Y Zhang, J F Li. Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(15): 4284–4303
https://doi.org/10.1039/C9TC00476A
27 K Chen, F Zhang, D Li, et al.. Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
28 Y Zhao, Y Chen, K Chen. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping. Frontiers of Materials Science, 2016, 10(4): 422–427
https://doi.org/10.1007/s11706-016-0362-8
29 K Chen, F Zhang, D Li, et al.. Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903
https://doi.org/10.1016/j.ceramint.2015.11.016
30 K Chen, J Tang. Effects of acceptor doping on sintering and piezoelectric properties of (K0.4825Na0.4825Li0.035)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2017, 695: 3364–3369
https://doi.org/10.1016/j.jallcom.2016.12.025
31 K Chen, F Zhang, Y Jiao, et al.. Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686
https://doi.org/10.1111/jace.14162
32 K Chen, J Zhou, F Zhang, et al.. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701
https://doi.org/10.1111/jace.13583
33 T Wang, D Wang, Y Liao, et al.. Defect structure, ferroelectricity and piezoelectricity in Fe/Mn/Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 2018, 38(15): 4915–4921
https://doi.org/10.1016/j.jeurceramsoc.2018.07.019
34 I Coondoo, N Panwar, H Maiwa, et al.. Improved piezoelectric and energy harvesting characteristics in lead-free Fe2O3 modified KNN ceramics. Journal of Electroceramics, 2015, 34(4): 255–261
https://doi.org/10.1007/s10832-015-9983-z
35 Z H Zhao, Y J Dai, F Huang. The formation and effect of defect dipoles in lead-free piezoelectric ceramics: A review. Sustainable Materials and Technologies, 2019, e00092
https://doi.org/10.1016/j.susmat.2019.e00092
36 K Uchino, S Nomura. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics, 1982, 44(1): 55–61
https://doi.org/10.1080/00150198208260644
37 D Damjanovic. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998, 61(9): 1267–1324
https://doi.org/10.1088/0034-4885/61/9/002
38 Y J Dai, Y J Zhao, Z Zhao, et al.. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics. Journal of Physics D: Applied Physics, 2016, 49(27): 275303
https://doi.org/10.1088/0022-3727/49/27/275303
[1] Kepi CHEN,Yanlin JIAO. Effects of Ge4+ acceptor dopant on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics[J]. Front. Mater. Sci., 2017, 11(1): 59-65.
[2] Yajing ZHAO,Yan CHEN,Kepi CHEN. Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping[J]. Front. Mater. Sci., 2016, 10(4): 422-427.
[3] Wen-Feng LIANG,Ding-Quan XIAO,Jia-Gang WU,Wen-Juan WU,Jian-Guo ZHU. Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics[J]. Front. Mater. Sci., 2014, 8(2): 165-175.
[4] Ke-Pi CHEN, Zhe ZHANG. BiCoO3-doped (K0.475Na0.475Li0.05)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics[J]. Front Mater Sci, 2012, 6(4): 311-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed