Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2012, Vol. 7 Issue (1): 3-7    DOI: 10.1007/s11467-011-0202-3
  RESEARCH ARTICLE 本期目录 |  
Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices
Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices
Andrey R. Kolovsky1,2()
1. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russia; 2. Institute of Engineering Physics, Siberian Federal University, 660041 Krasnoyarsk, Russia
全文: PDF(236 KB)   HTML
Abstract

Quantum dynamics of a charged particle in a two-dimensional (2D) lattice subject to magnetic and electric fields is a rather complicated interplay between cyclotron oscillations (the case of vanishing electric field) and Bloch oscillations (zero magnetic field), details of which has not yet been completely understood. In the present work we suggest to study this problem by using cold atoms in optical lattices. We introduce a one-dimensional (1D) model which can be easily realized in laboratory experiments with quasi-1D optical lattices and show that this model captures many features of the cyclotron-Bloch dynamics of the quantum particle in 2D square lattices.

Key wordsoptical lattice    Bloch dynamics    cyclotron oscillations    cold atoms
收稿日期: 2011-06-06      出版日期: 2012-02-01
引用本文:   
. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Frontiers of Physics, 2012, 7(1): 3-7.
Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices. Front. Phys. , 2012, 7(1): 3-7.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0202-3      或      http://academic.hep.com.cn/fop/CN/Y2012/V7/I1/3
1 D. R. Hofstadter, Phys. Rev. B , 1976, 14(6): 2239
doi: 10.1103/PhysRevB.14.2239
2 R. E. Peiers, Z. Phys. , 1993, 80: 763
3 T. Nakanishi, T. Ohtsuki, and M. Saitoh, J. Phys. Soc. Jpn. , 1993, 62(8): 2773
doi: 10.1143/JPSJ.62.2773
4 M. Glück, F. Keck, A. R. Kolovsky, and H. J. Korsch, Phys. Rev. Lett. , 2001, 86(14): 3116
doi: 10.1103/PhysRevLett.86.3116
5 T. Nakanishi, T. Ohtsuki, and M. Saitoh, J. Phys. Soc. Jpn , 1995, 64(6): 2092
doi: 10.1143/JPSJ.64.2092
6 G. Roati, C. D’ Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature , 2008, 453(7197): 895
doi: 10.1038/nature07071
7 S. Aubry and G. André, Ann. Israel. Phys. Soc. , 1980, 3: 133
8 P. G. Harper, Proc. Phys. Soc. A , 1955, 68(10): 874
doi: 10.1088/0370-1298/68/10/304
9 A. R. Kolovsky, Europhys. Lett. , 2011, 93(2): 20003
doi: 10.1209/0295-5075/93/20003
10 A. R. Kolovsky and G. Mantica, Phys. Rev. E , 2011, 83(4): 041123
doi: 10.1103/PhysRevE.83.041123
11 I. Chesnokov, A. R. Kolovsky, and G. Mantica, in preparation
12 We note that in the experiment [6] the authors used a mirror to create the standing waves. In this work we assume the other scheme of the experimental setup, where the standing waves are formed by counter-propagating laser beams.
13 We recall that there is a family of transporting states in the original problem, each representative of which is naturally characterized by its dispersion in the two orthogonal directions [11].
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed