Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2012, Vol. 7 Issue (2): 200-207    DOI: 10.1007/s11467-011-0204-1
Quantum spin Hall effect in inverted InAs/GaSb quantum wells
Quantum spin Hall effect in inverted InAs/GaSb quantum wells
Ivan Knez(), Rui-Rui Du()
Department of Physics and Astronomy, Rice University, Houston, TX 77251-1892, USA
全文: PDF(479 KB)   HTML

We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of conductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of comparable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.

Key wordsquantum spin Hall effect    InAs/GaSb quantum wells    topological insulators
收稿日期: 2011-05-03      出版日期: 2012-04-01
. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Frontiers of Physics, 2012, 7(2): 200-207.
Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells. Front. Phys. , 2012, 7(2): 200-207.
链接本文:      或
1 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. , 2010, 82: 3045
doi: 10.1103/RevModPhys.82.3045
2 X. L. Qi and S.C. Zhang, arXiv:1008.2026 , 2010
3 C. L. Kane and E. J. Mele, Phys. Rev. Lett. , 2005, 95: 226801
doi: 10.1103/PhysRevLett.95.226801
4 B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. , 2006, 96: 106802
doi: 10.1103/PhysRevLett.96.106802
5 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science , 2006, 314: 1757
doi: 10.1126/science.1133734
6 M. K?nig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science , 2007, 318: 766
doi: 10.1126/science.1148047
7 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature , 2008, 452: 970
doi: 10.1038/nature06843
8 P. RoushanJ SeoC. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan1, R. J. Cava, and A. Yazdani, Nature , 2009, 460: 1106
9 P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J.Wang, Y. Wang, B. F. Zhu, X. Chen, X. C.Ma, K. He, L. Wang, X. Dai, Z. Fang, X. C. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett. , 2010, 105: 076801
doi: 10.1103/PhysRevLett.105.076801
10 C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. , 2008, 100: 236601
doi: 10.1103/PhysRevLett.100.236601
11 I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. B , 2010, 81: 201301(R)
doi: 10.1103/PhysRevB.81.201301
12 I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. , 2011, 107: 136603
doi: 10.1103/PhysRevLett.107.136603
13 I. Y. Naveh and B. Laikhtman, Appl. Phys. Lett. , 1995, 66: 1980
doi: 10.1063/1.113297
14 C. Nguyen, J. Werking, H. Kroemer, and E. L. Hu, Appl. Phys. Lett. , 1990, 57: 87
doi: 10.1063/1.103546
15 L. Fu and C. L. Kane, Phys. Rev. Lett. , 2008, 100: 096407
doi: 10.1103/PhysRevLett.100.096407
16 H. Kroemer, Physica E , 2004, 20: 196
doi: 10.1016/j.physe.2003.08.003
17 See: e.g., S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
18 M. Yang, C. Yang, B. Bennett, and B. Shanabrook, Phys. Rev. Lett. , 1997, 78: 4613
doi: 10.1103/PhysRevLett.78.4613
19 L. Cooper, N. Patel, V. Drouot, E. Linfield, D. Ritchie, and M. Pepper, Phys. Rev. B , 1998, 57: 11915
doi: 10.1103/PhysRevB.57.11915
20 J. Kono, B. D. McCombe, I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. B , 1997, 55: 1617
doi: 10.1103/PhysRevB.55.1617
21 M. J. Yang, C. H. Yang, and B. R. Bennett, Phys. Rev. B , 1999, 60: R13958
22 Y. Naveh and B. Laikhtman, Europhys. Lett. , 2001, 55: 545
doi: 10.1209/epl/i2001-00450-8
23 A. Caldeira and A. J. Legett, Phys. Rev. Lett. , 1981, 46: 211
doi: 10.1103/PhysRevLett.46.211
24 C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, J. Electron. Mater. , 1993, 22: 255
doi: 10.1007/BF02665035
25 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. , 1979, 42: 673
doi: 10.1103/PhysRevLett.42.673
26 B. Zhou, H. Z. Lu, R. L. Chu, S. Q. Shen, and Q. Niu, Phys. Rev. Lett. , 2008, 101: 246807
doi: 10.1103/PhysRevLett.101.246807
27 J. I. V?yrynen and T. Ojanen, Phys. Rev. Lett. , 2011, 106: 076803
doi: 10.1103/PhysRevLett.106.076803
28 J. Maciejko, X. L. Qi, and S. C. Zhang, Phys. Rev. B , 2010, 82: 155310
doi: 10.1103/PhysRevB.82.155310
29 M. Konig, Ph. D. Thesis, Wurzburg University , 2007, private communications
30 R. J. Nicholas, K. Takashina, M. Lakrimi, B. Kardynal, S. Khym, N. J. Mason, D. M. Symons, D. K. Maude, and J. C. Portal, Phys. Rev. Lett. , 2000, 85: 2364
doi: 10.1103/PhysRevLett.85.2364
31 I. Knez, R. R. Du, and G. Sullivan, to be published
No related articles found!
Full text