Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2014, Vol. 9 Issue (3): 323-350    DOI: 10.1007/s11467-013-0408-7
  Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) 本期目录 |  
Nanomaterials for electrochemical energy storage
Nian Liu1,Weiyang Li2,Mauro Pasta2,Yi Cui2,3,*()
1. Department of Chemistry, Stanford University, Stanford, CA 94305, USA
2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
全文: PDF(2051 KB)  
Abstract

The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to the advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous openframework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.

Key wordsnanomaterial    energy storage    silicon anode    sulfur cathode    stationary battery    electrochemical capacitors
收稿日期: 2013-11-07      出版日期: 2014-06-26
引用本文:   
. [J]. Frontiers of Physics, 2014, 9(3): 323-350.
Nian Liu, Weiyang Li, Mauro Pasta, Yi Cui. Nanomaterials for electrochemical energy storage. Front. Phys. , 2014, 9(3): 323-350.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0408-7      或      http://academic.hep.com.cn/fop/CN/Y2014/V9/I3/323
1 S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294
doi: 10.1038/nature11475
2 J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
doi: 10.1038/35104644
3 M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
doi: 10.1038/451652a
4 Z. Yang, J. Zhang, M. C. W.Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577
doi: 10.1021/cr100290v
5 B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741
6 A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366
doi: 10.1038/nmat1368
7 Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878
doi: 10.1002/adma.200800627
8 W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13
doi: 10.1016/j.jpowsour.2010.07.020
9 P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19
doi: 10.1038/nmat3191
10 A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547
doi: 10.1149/1.2407783
11 B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725
doi: 10.1149/1.2127495
12 T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838
doi: 10.1149/1.1739217
13 M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. SolidState Lett., 2004, 7(5): A93
doi: 10.1149/1.1652421
14 M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966
doi: 10.1002/adma.201301795
15 L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137
doi: 10.1149/1.1388178
16 S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080
doi: 10.1073/pnas.1201088109
17 J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306
doi: 10.1149/1.1792242
18 J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87
doi: 10.1016/S0378-7753(96)02547-5
19 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310
doi: 10.1038/nnano.2012.35