Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2014, Vol. 9 Issue (3): 323-350    DOI: 10.1007/s11467-013-0408-7
  Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) 本期目录 |  
Nanomaterials for electrochemical energy storage
Nian Liu1,Weiyang Li2,Mauro Pasta2,Yi Cui2,3,*()
1. Department of Chemistry, Stanford University, Stanford, CA 94305, USA
2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
3. Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
全文: PDF(2051 KB)  
Abstract

The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to the advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous openframework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.

Key wordsnanomaterial    energy storage    silicon anode    sulfur cathode    stationary battery    electrochemical capacitors
收稿日期: 2013-11-07      出版日期: 2014-06-26
引用本文:   
. [J]. Frontiers of Physics, 2014, 9(3): 323-350.
Nian Liu, Weiyang Li, Mauro Pasta, Yi Cui. Nanomaterials for electrochemical energy storage. Front. Phys. , 2014, 9(3): 323-350.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0408-7      或      http://academic.hep.com.cn/fop/CN/Y2014/V9/I3/323
1 S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 2012, 488(7411): 294
doi: 10.1038/nature11475
2 J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
doi: 10.1038/35104644
3 M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
doi: 10.1038/451652a
4 Z. Yang, J. Zhang, M. C. W.Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 2011, 111(5): 3577
doi: 10.1021/cr100290v
5 B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741
6 A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4(5): 366
doi: 10.1038/nmat1368
7 Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878
doi: 10.1002/adma.200800627
8 W. J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, 2011, 196(1): 13
doi: 10.1016/j.jpowsour.2010.07.020
9 P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 2012, 11(1): 19
doi: 10.1038/nmat3191
10 A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc., 1971, 118(10): 1547
doi: 10.1149/1.2407783
11 B. A. Boukamp, All-solid lithium electrodes with mixedconductor matrix, J. Electrochem. Soc., 1981, 128(4): 725
doi: 10.1149/1.2127495
12 T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 2004, 151(6): A838
doi: 10.1149/1.1739217
13 M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. SolidState Lett., 2004, 7(5): A93
doi: 10.1149/1.1652421
14 M. T. McDowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 2013, 25(36): 4966
doi: 10.1002/adma.201301795
15 L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, Colossal reversible volume changes in lithium alloys, Electrochem. Solid-State Lett., 2001, 4(9): A137
doi: 10.1149/1.1388178
16 S. W. Lee, M. T. McDowell, L. A. Berla, W. D. Nix, and Y. Cui, Fracture of crystalline silicon nanopillars during electrochemical lithium insertion, Proc. Natl. Acad. Sci. USA, 2012, 109(11): 4080
doi: 10.1073/pnas.1201088109
17 J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett., 2004, 7(10): A306
doi: 10.1149/1.1792242
18 J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87
doi: 10.1016/S0378-7753(96)02547-5
19 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. Mc-Dowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solidelectrolyte interphase control, Nat. Nanotechnol., 2012, 7(5): 310
doi: 10.1038/nnano.2012.35
20 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 2008, 3(1): 31
doi: 10.1038/nnano.2007.411
21 H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 2012, 7(5): 414
doi: 10.1016/j.nantod.2012.08.004
22 C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443
doi: 10.1021/nn901409q
23 C. K. Chan, X. F. Zhang, and Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Lett., 2008, 8(1): 307
doi: 10.1021/nl0727157
24 P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera, and M. K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett., 2009, 9(2): 612
doi: 10.1021/nl802864a
25 C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, J. Power Sources, 2009, 189(2): 1132
doi: 10.1016/j.jpowsour.2009.01.007
26 R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 2009, 113(26): 11390
doi: 10.1021/jp901594g
27 C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources, 2009, 189(1): 34
doi: 10.1016/j.jpowsour.2008.12.047
28 S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, and M. F. Toney, In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes, ACS Nano, 2012, 6(6): 5465
doi: 10.1021/nn301339g
29 J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan, and Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures, Nano Lett., 2010, 10(4): 1409
doi: 10.1021/nl100258p
30 L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 2009, 9(9): 3370
doi: 10.1021/nl901670t
31 L. F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui, Crystalline-amorphous coretshell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 2009, 9(1): 491
doi: 10.1021/nl8036323
32 X. Chen, K. Gerasopoulos, J. Guo, A. Brown, C. Wang, R. Ghodssi, and J. N. Culver, Virus-enabled silicon anode for lithium-ion batteries, ACS Nano, 2010, 4(9): 5366
doi: 10.1021/nn100963j
33 S. Zhou, X. Liu, and D. Wang, Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries, Nano Lett., 2010, 10(3): 860
doi: 10.1021/nl903345f
34 Y. Yao, K. Huo, L. Hu, N. Liu, J. J. Cha, M. T. McDowell, P. K. Chu, and Y. Cui, Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries, ACS Nano, 2011, 5(10): 8346
doi: 10.1021/nn2033693
35 H. Zhang and P. V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett., 2012, 12(6): 2778
doi: 10.1021/nl204551m
36 R. Huang, X. Fan, W. Shen, and J. Zhu, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Appl. Phys. Lett., 2009, 95(13): 133119
doi: 10.1063/1.3238572
37 L. Su, Z. Zhou, and M. Ren, Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries, Chem. Commun., 2010, 46(15): 2590
doi: 10.1039/b925696b
38 A. Vlad, A. L.M. Reddy, A Ajayan. N. Singh, J. F. Gohy, S. Melinte, and P. M. Ajayan, Roll up nanowire battery from silicon chips, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15168
doi: 10.1073/pnas.1208638109
39 A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh, and D. Mitlin, Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance, J. Mater. Chem. A, 2013, 1: 12850
doi: 10.1039/c3ta12964k
40 Y. Yao, N. Liu, M. T. McDowell, M. Pasta, and Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings, Energy Environ. Sci., 2012, 5: 7927
doi: 10.1039/c2ee21437g
41 L. Su, Y. Jing, and Z. Zhou, Li ion battery materials with core-shell nanostructures, Nanoscale, 2011, 3(10): 3967
doi: 10.1039/c1nr10550g
42 L. F. Cui, L. Hu, H. Wu, J. W. Choi, and Y. Cui, Inorganic glue enabling high performance of silicon particles as lithium ion battery anode, J. Electrochem. Soc., 2011, 158(5): A592
doi: 10.1149/1.3560030
43 L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, and Y. Cui, Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes, Chem. Commun., 2011, 47(1): 367
doi: 10.1039/c0cc02078h
44 A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, Highperformance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 2010, 9(4): 353
doi: 10.1038/nmat2725
45 D. S. Jung, T. H. Hwang, S. B. Park, and J. W. Choi, Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries, Nano Lett., 2013, 13(5): 2092
doi: 10.1021/nl400437f
46 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward efficient binders for Li-ion battery Sibased anodes: Polyacrylic acid, ACS Appl. Mater. Interfaces, 2010, 2(11): 3004
doi: 10.1021/am100871y
47 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, 334(6052): 75
doi: 10.1126/science.1209150
48 G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. Yang, Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23(40): 4679
doi: 10.1002/adma.201102421
49 H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 2013, 4: 1943
doi: 10.1038/ncomms2941
50 M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho, Silicon nanotube battery anodes, Nano Lett., 2009, 9(11): 3844
doi: 10.1021/nl902058c
51 T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K. C. Hwang, J. A. Rogers, and U. Paik, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 2010, 10(5): 1710
doi: 10.1021/nl100086e
52 Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 2011, 11(7): 2949
doi: 10.1021/nl201470j
53 M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries, Angew. Chem. Int. Ed., 2011, 123(41): 9821
doi: 10.1002/ange.201103062
54 S. Han, B. Jang, T. Kim, S. M. Oh, and T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 2005, 15(11): 1845
doi: 10.1002/adfm.200500243
55 X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, and L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater., 2006, 18(17): 2325
doi: 10.1002/adma.200600733
56 H. Kim, B. Han, J. Choo, and J. Cho, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 2008, 120(52): 10305
doi: 10.1002/ange.200804355
57 Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, Reversible storage of lithium in silver-coated threedimensional macroporous silicon, Adv. Mater., 2010, 22(20): 2247
doi: 10.1002/adma.200903755
58 J. Cho, Porous Si anode materials for lithium rechargeable batteries, J. Mater. Chem., 2010, 20(20): 4009
doi: 10.1039/b923002e
59 H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, and Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material, Adv. Energy Mater., 2011, 1(6): 1036
doi: 10.1002/aenm.201100485
60 D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu, and J. Y. Lee, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 2012, 51(10): 2409
doi: 10.1002/anie.201107885
61 J. Zhu, C. Gladden, N. Liu, Y. Cui, and X. Zhang, Nanoporous silicon networks as anodes for lithium ion batteries, Phys. Chem. Chem. Phys., 2013, 15(2): 440
doi: 10.1039/c2cp44046f
62 M. Ge, J. Rong, X. Fang, and C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, 12(5): 2318
doi: 10.1021/nl300206e
63 Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. III Abernathy, C. J. Summers, M. Liu, and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature, 2007, 446(7132): 172
doi: 10.1038/nature05570
64 W. St?ber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 1968, 26(1): 62
doi: 10.1016/0021-9797(68)90272-5
65 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279(5350): 548
doi: 10.1126/science.279.5350.548
66 C. O. Tuck, E. Párez, I. T. Horváth, R. A. Sheldon, and M. Poliakoff, Valorization of biomass: Deriving more value from waste, Science, 2012, 337(6095): 695
doi: 10.1126/science.1218930
67 N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 2013, 3: 1919
doi: 10.1038/srep01919
68 A. Xing, S. Tian, H. Tang, D. Losic, and Z. Bao, Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries, RSC Adv., 2013, 3(26): 10145
doi: 10.1039/c3ra41889h
69 D. S. Jung, M. H. Ryou, Y. J. Sung, S. B. Park, and J. W. Choi, Recycling rice husks for highcapacity lithium battery anodes, Proc. Natl. Acad. Sci. USA, 2013, 110(30): 12229
doi: 10.1073/pnas.1305025110
70 R. Yi, F. Dai, M. L. Gordin, S. Chen, and D. Wang, Microsized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 2013, 3(3): 295
doi: 10.1002/aenm.201200857
71 K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104(10): 4303
doi: 10.1021/cr030203g
72 P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, 2010, 55(22): 6332
doi: 10.1016/j.electacta.2010.05.072
73 D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89(2): 206
doi: 10.1016/S0378-7753(00)00431-6
74 N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 2011, 5(8): 6487
doi: 10.1021/nn2017167
75 V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 2012, 28(1): 965
doi: 10.1021/la203712s
76 V. Etacheri, U. Geiger, Y. Gofer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir, 2012, 28(14): 6175
doi: 10.1021/la300306v
77 N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes, Nano Lett., 2012, 12(6): 3315
doi: 10.1021/nl3014814
78 B. Hertzberg, A. Alexeev, and G. Yushin, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 2010, 132(25): 8548
doi: 10.1021/ja1031997
79 H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 2012, 12(2): 904
doi: 10.1021/nl203967r
80 X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J. G. Zhang, and J. Liu, Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes, J. Mater. Chem., 2012, 22(22): 11014
doi: 10.1039/c2jm31286g
81 B. Wang, X. Li, X. Zhang, B. Luo, Y. Zhang, and L. Zhi, Contact-engineered and voidinvolved silicon/carbon nanohybrids as lithium-ion-battery anodes, Adv. Mater., 2013, 25(26): 3560
doi: 10.1002/adma.201300844
82 K. Karki, Y. Zhu, Y. Liu, C. F. Sun, L. Hu, Y. Wang, C. Wang, and J. Cumings, Hoop-strong nanotubes for battery electrodes, ACS Nano, 2013, 7(9): 8295
doi: 10.1021/nn403895h
83 X. W. Lou, C. M. Li, and L. A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater., 2009, 21(24): 2536
doi: 10.1002/adma.200803439
84 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 2010, 330(6010): 1515
doi: 10.1126/science.1195628
85 M. T. McDowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix, and Y. Cui, Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy, Adv. Mater., 2012, 24(45): 6034
doi: 10.1002/adma.201202744
86 Y. Yang, G. Zheng, and Y. Cui, Nanostructured sulfur cathodes, Chem. Soc. Rev., 2013, 42(7): 3018
doi: 10.1039/c2cs35256g
87 A. Manthiram, Y. Fu, and Y. S. Su, Challenges and prospects of lithium–sulfur batteries, Acc. Chem. Res., 2013, 46(5): 1125
doi: 10.1021/ar300179v
88 Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc., 2004, 151(11): A1969
doi: 10.1149/1.1806394
89 X. L. Ji and L. F. Nazar, Advances in Li-S batteries, J. Mater. Chem., 2010, 20(44): 9821
doi: 10.1039/b925751a
90 C. Barchasz, J. C. Lepretre, F. Alloin, and S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, J. Power Sources, 2012, 199:322
doi: 10.1016/j.jpowsour.2011.07.021
91 J. Shim, K. A. Striebel, and E. J. Cairns, The lithium/sulfur rechargeable cell, J. Electrochem. Soc., 2002, 149(10): A1321
doi: 10.1149/1.1503076
92 X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 2009, 8(6): 500
doi: 10.1038/nmat2460
93 N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angew. Chem. Int. Ed., 2011, 50(26): 5904
doi: 10.1002/anie.201100637
94 J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, and B. Scrosati, An advanced lithium-sulfur battery, Adv. Funct. Mater., 2013, 23(8): 1076
doi: 10.1002/adfm.201200689
95 J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett., 2011, 11(10): 4288
doi: 10.1021/nl202297p
96 L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairns, and Y. Zhang, Porous carbon nanofibersulfur composite electrodes for lithium/sulfurcells, Energy Environ. Sci., 2011, 4: 5053
doi: 10.1039/c1ee02256c
97 C. Zu, Y. Fu, and A. Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes, J. Mater. Chem. A, 2013, 1(35): 10362
doi: 10.1039/c3ta11958k
98 R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, and D. Aurbach, Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Adv. Mater., 2011, 23(47): 5641
doi: 10.1002/adma.201103274
99 Y. S. Su and A. Manthiram, Lithium-sulfur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun., 2012, 3: 1166
doi: 10.1038/ncomms2163
100 B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, 2009, 54(14): 3708
doi: 10.1016/j.electacta.2009.01.056
101 C. Lai, X. P. Gao, B. Zhang, T. Y. Yan, and Z. Zhou, Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites, J. Phys. Chem. C, 2009, 113(11): 4712
doi: 10.1021/jp809473e
102 L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, and Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc., 2011, 133(46): 18522
doi: 10.1021/ja206955k
103 H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 2011, 11(7): 2644
doi: 10.1021/nl200658a
104 G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett., 2011, 11(10): 4462
doi: 10.1021/nl2027684
105 G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, and Y. Cui, Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries, Nano Lett., 2013, 13(3): 1265
doi: 10.1021/nl304795g
106 H. Yao, G. Zheng, W. Li, M. T.McDowell, Z. W. Seh, N. Liu, Z. Lu, and Y. Cui, Crab shells as sustainable templates from nature for nanostructured battery electrodes, Nano Lett., 2013, 13(7): 3385
doi: 10.1021/nl401729r
107 Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, and Y. Cui, Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS Nano, 2011, 5(11): 9187
doi: 10.1021/nn203436j
108 X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun., 2011, 2: 325
doi: 10.1038/ncomms1293
109 S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, 2012, 116(37): 19653
doi: 10.1021/jp304380j
110 J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries, Angew. Chem. Int. Ed., 2012, 51(15): 3591
doi: 10.1002/anie.201107817
111 J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J. C. Andrews, Y. Cui, and M. F. Toney, In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries, J. Am. Chem. Soc., 2012, 134(14): 6337
doi: 10.1021/ja2121926
112 Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, and Y. Cui, Sulphur-TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun., 2013, 4: 1331
doi: 10.1038/ncomms2327
113 W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, and Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7148
doi: 10.1073/pnas.1220992110
114 R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, and J. M. Tarascon, Cathode composites for Li-S batteries via the use of oxygenated porous architectures, J. Am. Chem. Soc., 2011, 133(40): 16154
doi: 10.1021/ja2062659
115 L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, and J. Liu, A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithiumsulfur batteries with long cycle life, Adv. Mater., 2012, 24(9): 1176
doi: 10.1002/adma.201103392
116 Y. Fu and A. Manthiram, Core-shell structured sulfurpolypyrrole composite cathodes for lithium–sulfur batteries, RSC Adv., 2012, 2: 5927
doi: 10.1039/c2ra20393f
117 H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, and L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Sci. Rep., 2013, 3: 1910
doi: 10.1038/srep01910
118 Y. Bouligand, Twisted fibrous arrangements in biological materials and cholesteric mesophases, Tissue Cell, 1972, 4(2): 189
doi: 10.1016/S0040-8166(72)80042-9
119 R. Roer and R. Dillaman, The structure and calcification of the crustacean cuticle, Am. Zool., 1984, 24: 893
120 M. M. Giraud-Guille, Plywood structures in nature, Curr. Opin. Solid State Mater. Sci., 1998, 3(3): 221
doi: 10.1016/S1359-0286(98)80094-6
121 P. Y. Chen, A. Y. M.Lin, J. McKittrick, and M. A. Meyers, Structure and mechanical properties of crab exoskeletons, Acta Biomater., 2008, 4(3): 587
doi: 10.1016/j.actbio.2007.12.010
122 N. Fujita, M. Asai, T. Yamashita, and S. Shinkai, Solgel transcription of silica-based hybrid nanostructures using poly(N-vinylpyrrolidone)-coated [60]fullerene, single-walled carbon nanotube and block copolymer templates, J. Mater. Chem., 2004, 14(14): 2106
doi: 10.1039/b401471e
123 M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, and R. E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342(3-4): 265
doi: 10.1016/S0009-2614(01)00490-0
124 J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed., 2010, 49(13): 2371
doi: 10.1002/anie.200907324
125 M. Nagao, A. Hayashi, and M. Tatsumisago, High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries, J. Mater. Chem., 2012, 22(19): 10015
doi: 10.1039/c2jm16802b
126 K. Cai, M. K. Song, E. J. Cairns, and Y. Zhang, Nanostructured Li2S-C composites as cathode material for high-energy lithium/sulfur batteries, Nano Lett., 2012, 12(12): 6474
doi: 10.1021/nl303965a
127 J. Guo, Z. Yang, Y. Yu, H. D. Abru?a, and L. A. Archer, Lithium-sulfur battery cathode enabled by lithium-nitrile interaction, J. Am. Chem. Soc., 2013, 135(2): 763
doi: 10.1021/ja309435f
128 Z. Lin, Z. Liu, N. J. Dudney, and C. Liang, Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries, ACS Nano, 2013, 7(3): 2829
doi: 10.1021/nn400391h
129 Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, New nanostructured Li2S/silicon rechargeable battery with high specific energy, Nano Lett., 2010, 10(4): 1486
doi: 10.1021/nl100504q
130 Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, and Y. Cui, High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc., 2012, 134(37): 15387
doi: 10.1021/ja3052206
131 Z. W. Seh, Q. Zhang, W. Li, G. Zheng, H. Yao, and Y. Cui, Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chem. Sci., 2013, 4(9): 3673
doi: 10.1039/c3sc51476e
132 A. Kraft, On the discovery and history of prussian blue, Bull. Hist. Chem., 2008, 33(2): 61
133 S. I. Ohkoshi, K. I. Arai, Y. Sato, and K. Hashimoto, Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly, Nat. Mater., 2004, 3(12): 857
doi: 10.1038/nmat1260
134 T. Matsuda, J. Kim, and Y. Moritomo, Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange, J. Am. Chem. Soc., 2010, 132(35): 12206
doi: 10.1021/ja105482k
135 E. Coronado, M. C. Giménez-López, G. Levchenko, F. M. Romero, V. García-Baonza, A. Milner, and M. Paz-Pasternak, Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate, J. Am. Chem. Soc., 2005, 127(13): 4580
doi: 10.1021/ja043166z
136 S. Margadonna, K. Prassides, and A. N. Fitch, Zero thermal expansion in a Prussian Blue analogue, J. Am. Chem. Soc., 2004, 126(47): 15390
doi: 10.1021/ja044959o
137 S. S. Kaye and J. R. Long, Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M= Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc., 2005, 127(18): 6506
doi: 10.1021/ja051168t
138 K. Hashimoto and H. Ohkoshi, Design of novel magnets using Prussian blue analogues, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 2977
139 T. Mallah, A. Marvilliers, and E. Rivière, From ferromagnets to high-spin molecules: The role of the organic ligands, Phil. Trans. R. Soc. Lond. A, 1999, 357(1762): 3139
140 M. Verdaguer, A. Bleuzen, V. Marvaud, J. Vaissermann, M. Seuleiman, C. Desplanches, A. Scuiller, C. Train, R. Garde, G. Gelly, C. Lomenech, I. Rosenman, P. Veillet, C. Cartier, and F. Villain, Molecules to build solids: High Tc moleculebased magnets by design and recent revival of cyano complexes chemistry, Coord. Chem. Rev., 1999, 190-192: 1023
doi: 10.1016/S0010-8545(99)00156-3
141 A. A. Karyakin, Prussian blue and its analogues: Electrochemistry and analytical applications, Electroanalysis, 2001, 13(10): 813
doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
142 T. Matsuda, J. Kim, K. Ohoyama, and Y. Moritomo, Universal thermal response of the Prussian blue lattice, Phys. Rev. B, 2009, 79(17): 172302
doi: 10.1103/PhysRevB.79.172302
143 A. Ludi and H. Güdel, Inorganic Chemistry, Berlin/ Heidelberg: Springer, 1973: 1
144 H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O, Inorg. Chem., 1977, 16(11): 2704
doi: 10.1021/ic50177a008
145 F. Herren, P. Fischer, A. Ludi, and W. H?lg, Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order, Inorg. Chem., 1980, 19(4): 956
doi: 10.1021/ic50206a032
146 P. Bhatt, N. Thakur, M. D. Mukadam, S. S. Meena, and S. M. Yusuf, Evidence for the existence of oxygen clustering and understanding of structural disorder in prussian blue analogues molecular magnet M15[Cr(CN)6]?zH2O (M= Fe and Co): Reverse Monte Carlo simulation and neutron diffraction study, J. Phys. Chem. C, 2013, 117(6): 2676
doi: 10.1021/jp312395y
147 C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun., 2011, 2: 550
doi: 10.1038/ncomms1563
148 D. E. Stilwell, K. H. Park, and M. H. Miles, Electrochemical studies of the factors influencing the cycle stability of Prussian blue films, J. Appl. Electrochem., 1992, 22(4): 325
doi: 10.1007/BF01092684
149 T. Oi, Electrochromic materials, Annu. Rev. Mater. Sci., 1986, 16(1): 185
doi: 10.1146/annurev.ms.16.080186.001153
150 K. Itaya, T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, 104(18): 4767
doi: 10.1021/ja00382a006
151 F. Scholz and A. Dostal, The formal potentials of solid metal hexacyanometalates, Angew. Chem. Int. Ed. Engl., 1996, 34(2324): 2685
doi: 10.1002/anie.199526851
152 N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, and T. Yamagishi, Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery, J. Power Sources, 1999, 79(2): 215
doi: 10.1016/S0378-7753(99)00061-0
153 D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. S. Zhou, and D. R. Talham, Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core-shell nanoparticles with enhanced cyclability, J. Am. Chem. Soc., 2013, 135(7): 2793
doi: 10.1021/ja312160v
154 X. J. Wang, F. Krumeich, and R. Nesper, Nanocomposite of manganese ferrocyanide and graphene: A promising cathode material for rechargeable lithium ion batteries, Electrochem. Commun., 2013, 34: 246
doi: 10.1016/j.elecom.2013.06.019
155 N. Imanishi, T. Morikawa, J. Kondo, R. Yamane, Y. Takeda, O. Yamamoto, H. Sakaebe, and M. Tabuchi, Lithium intercalation behavior of iron cyanometallates, J. Power Sources, 1999, 81-82: 530
doi: 10.1016/S0378-7753(98)00228-6
156 M. Takachi, Y. Kurihara, and Y. Moritomo, Channel size dependence of Li+ insertion/extraction in nanoporous hexacyanoferrates, J. Mater. Sci. Eng. B, 2012, 2(8): 452
157 M. Okubo and I. Honma, Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries, Dalton Trans., 2013, 42(45): 15881
doi: 10.1039/c3dt51369f
158 M. Takachi, T. Matsuda, and Y. Moritomo, Structural, electronic, and electrochemical properties of LixO[Fe(CN)6]0.90?2.9H2O, Jpn. J. Appl. Phys., 2013, 52:044301
doi: 10.7567/JJAP.52.044301
159 L. Wang, Y. H. Lu, J. Liu, M. W. Xu, J. G. Cheng, D. W. Zhang, and J. B. Goodenough, A superior low-cost cathode for a Na-ion battery, Angew. Chem. Int. Ed., 2013, 52(7): 1964
doi: 10.1002/anie.201206854
160 Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun., 2012, 48(52): 6544
doi: 10.1039/c2cc31777j
161 H. Lee, Y. I. Kim, J. K. Park, and J. W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, 48(67): 8416
doi: 10.1039/c2cc33771a
162 T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries, Chem. Commun., 2013, 49(27): 2750
doi: 10.1039/c3cc38839e
163 M. Takachi, T. Matsuda, and Y. Moritomo, Cobalt hexacyanoferrate as cathode material for Na+ secondary battery, Appl. Phys. Express, 2013, 6(2): 025802
doi: 10.7567/APEX.6.025802
164 W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable lithium batteries with aqueous electrolytes, Science, 1994, 264(5162): 1115
doi: 10.1126/science.264.5162.1115
165 Y. Mizuno, M. Okubo, D. Asakura, T. Saito, E. Hosono, Y. Saito, K. Oh-ishi, T. Kudo, and H. Zhou, Impedance spectroscopic study on interfacial ion transfers in cyanidebridged coordination polymer electrode with organic electrolyte, Electrochim. Acta, 2012, 63: 139
doi: 10.1016/j.electacta.2011.12.068
166 Y. Mizuno, M. Okubo, E. Hosono, T. Kudo, H. Zhou, and K. Oh-ishi, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 2013, 117(21): 10877
doi: 10.1021/jp311616s
167 S. I. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, and H. Tokoro, High proton conductivity in prussian blue analogues and the interference effect by magnetic ordering, J. Am. Chem. Soc., 2010, 132(19): 6620
doi: 10.1021/ja100385f
168 Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim, Cubic-rhombohedral structural phase transition in Na1.32Mn[Fe(CN)6]0.83?3.6H2O, J. Phys. Soc. Jpn., 2011, 80(7): 074608
doi: 10.1143/JPSJ.80.074608
169 C. D.Wessells, M. T. McDowell, S. V. Peddada, M. Pasta, R. A. Huggins, and Y. Cui, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 2012, 6(2): 1688
doi: 10.1021/nn204666v
170 R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, H. Na, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system, Electrochim. Acta, 2013, 87: 119
doi: 10.1016/j.electacta.2012.08.124
171 C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, and Y. Cui, The effect of insertion species on nanostruc-tured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc., 2012, 159(2): A98
doi: 10.1149/2.060202jes
172 C. D. Wessells, S. V. Peddada, R. A. Huggins, and Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 2011, 11(12): 5421
doi: 10.1021/nl203193q
173 M. Pasta, C. D. Wessells, R. A. Huggins, and Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat. Commun., 2012, 3: 1149
doi: 10.1038/ncomms2139
174 R. Klenze, B. Kanellakopulos, G. Trageser, and H. H. Eysel, Manganese hexacyanomanganate: Magnetic interactions via cyanide in a mixed valence Prussian blue type compound, J. Chem. Phys., 1980, 72(11): 5819
doi: 10.1063/1.439105
175 J. H. Her, P. W. Stephens, C. M. Kareis, J. G. Moore, K. S. Min, J. W. Park, G. Bali, B. S. Kennon, and J. S. Miller, Anomalous non-Prussian blue structures and magnetic ordering of K2MnII[MnII(CN)6] and Rb2 MnII[MnII(CN)6], Inorg. Chem., 2010, 49(4): 1524
doi: 10.1021/ic901903f
176 M. Pasta, C. D. Wessells, N. Liu, J. Nelson, M. T. Mc-Dowell, R. A. Huggins, M. F. Toney, and Y. Cui, Full open-framework batteries for stationary energy storage, Nat. Commun.,, 2014
doi: 10.1038/ncomms4007
177 R. Y. Wang, C. D. Wessells, R. A. Huggins, and Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett., 2013, 13(11): 5748
doi: 10.1021/nl403669a
178 F. La Mantia, M. Pasta, H. D. Deshazer, B. E. Logan, and Y. Cui, Batteries for efficient energy extraction from a water salinity difference, Nano Lett., 2011, 11(4): 1810
doi: 10.1021/nl200500s
179 M. Pasta, C. D. Wessells, Y. Cui, and F. La Mantia, A desalination battery, Nano Lett., 2012, 12(2): 839
doi: 10.1021/nl203889e
180 M. Pasta, A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines, Energy Environ. Sci., 2012, 5(11): 9487
doi: 10.1039/c2ee22977c
181 P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci., 2010, 3(9): 1238
doi: 10.1039/c0ee00004c
182 M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 2004, 104(10): 4245
doi: 10.1021/cr020730k
183 J. R. Miller and P. Simon, Electrochemical capacitors for energy management, Science, 2008, 321(5889): 651
doi: 10.1126/science.1158736
184 P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297
185 V. Subramanian, S. C. Hall, P. H. Smith, and B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ion., 2004, 175(1-4): 511
doi: 10.1016/j.ssi.2004.01.070
186 C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 2006, 6(12): 2690
doi: 10.1021/nl061576a
187 H. Y. Lee and J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 1999, 144(1): 220
doi: 10.1006/jssc.1998.8128
188 A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources, 1994, 47(1-2): 89
doi: 10.1016/0378-7753(94)80053-7
189 L. Hu and Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles, Energy Environ. Sci., 2012, 5(4): 6423
doi: 10.1039/c2ee02414d
190 C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 1997, 70(11): 1480
doi: 10.1063/1.118568
191 M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett., 2009, 9(5): 1872
doi: 10.1021/nl8038579
192 L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490
doi: 10.1073/pnas.0908858106
193 M. Pasta, F. La Mantia, L. Hu, H. Deshazer, and Y. Cui, Aqueous supercapacitors on conductive cotton, Nano Res., 2010, 3(6): 452
doi: 10.1007/s12274-010-0006-8
194 L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Stretchable, porous, and conductive energy textiles, Nano Lett., 2010, 10(2): 708
doi: 10.1021/nl903949m
195 X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui, Graphene–sponges as highperformance low-cost anodes for microbial fuel cells, Energy Environ. Sci., 2012, 5: 6862
doi: 10.1039/c2ee03583a
196 L. Hu, H. Wu, and Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper, Appl. Phys. Lett., 2010, 96(18): 183502
doi: 10.1063/1.3425767
197 G. Zheng, L. Hu, H. Wu, X. Xie, and Y. Cui, Paper supercapacitors by a solvent-free drawing method, Energy Environ. Sci., 2011, 4(9): 3368
doi: 10.1039/c1ee01853a
198 Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, 1(1): 107
doi: 10.1016/j.nanoen.2011.11.001
199 G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2(2): 213
doi: 10.1016/j.nanoen.2012.10.006
200 X. Lang, A. Hirata, T. Fujita, and M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6(4): 232
doi: 10.1038/nnano.2011.13
201 L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, and Y. Cui, Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading, ACS Nano, 2011, 5(11): 8904
doi: 10.1021/nn203085j
202 W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett., 2011, 11(12): 5165
doi: 10.1021/nl2023433
203 G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Solutionprocessed graphene/MnO2 nanostructured textiles for highperformance electrochemical capacitors, Nano Lett., 2011, 11(7): 2905
doi: 10.1021/nl2013828
204 G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, and Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett., 2011, 11(10): 4438
doi: 10.1021/nl2026635
205 N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater., 2006, 18(11): 1345
doi: 10.1002/adma.200501612
206 A. Guiseppi-Elie, Electroconductive hydrogels: Synthesis, characterization and biomedical applications, Biomaterials, 2010, 31(10): 2701
doi: 10.1016/j.biomaterials.2009.12.052
207 R. A. Green, S. Baek, L. A. Poole-Warren, and P. J. Martens, Conducting polymer-hydrogels for medical electrode applications, Sci. Technol. Adv. Mater., 2010, 11(1): 014107
doi: 10.1088/1468-6996/11/1/014107
208 S. Ghosh, J. Rasmusson, and O. Ingan?s, Supramolecular self-assembly for enhanced conductivity in conjugated polymer blends: Ionic crosslinking in blends of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and poly(vinylpyrrolidone), Adv. Mater., 1998, 10(14): 1097
doi: 10.1002/(SICI)1521-4095(199810)10:14<1097::AID-ADMA1097>3.0.CO;2-M
209 S. Ghosh and O. Ingan?s, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater., 1999, 11(14): 1214
doi: 10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO;2-3
210 N. Mano, J. E. Yoo, J. Tarver, Y. L. Loo, and A. Heller, An electron-conducting cross-linked polyanilinebased redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase, J. Am. Chem. Soc., 2007, 129(22): 7006
doi: 10.1021/ja071946c
211 L. Pan, G. Yu, D. Zhai, H. R. Lee, W. Zhao, N. Liu, H. Wang, B. C. K. Tee, Y. Shi, Y. Cui, and Z. Bao, Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9287
doi: 10.1073/pnas.1202636109
212 Y. Zhao, B. Liu, L. Pan, and G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci., 2013, 6(10): 2856
doi: 10.1039/c3ee40997j
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed