Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2015, Vol. 10 Issue (4): 107302-    DOI: 10.1007/s11467-015-0472-2
Novel method to determine effective length of quantum confinement using fractional-dimension space approach
Hua Li1,2,Bing-Can Liu2,Bing-Xin Shi1,Si-Yu Dong1,Qiang Tian1,*()
1. Department of Physics, Beijing Normal University, Beijing 100875, China
2. Department of Fundamental Courses, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(380 KB)  

The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlxGa1-x As substrate are investigated, for different film thickness values and aluminum concentrations and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limitations of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fractional-dimensional theoretical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory.

Key wordsfractional-dimensional approach    effective length of quantum confinement    polaron effect    GaAs film
收稿日期: 2014-12-03      出版日期: 2015-08-17
. [J]. Frontiers of Physics, 2015, 10(4): 107302-.
Hua Li, Bing-Can Liu, Bing-Xin Shi, Si-Yu Dong, Qiang Tian. Novel method to determine effective length of quantum confinement using fractional-dimension space approach. Front. Phys. , 2015, 10(4): 107302-.
链接本文:      或
1 L. Wendler and R. Haupt, Electron-phonon interaction in semiconductor superlattices, Phys. Status Solidi B 143(2), 487 (1987)
doi: 10.1002/pssb.2221430211
2 N. Mori and T. Ando, Electron optical-phonon interaction in single and double heterostructures, Phys. Rev. B 40(9), 6175 (1989)
doi: 10.1103/PhysRevB.40.6175
3 X. X. Lang, The interaction of interface optical phonons with an electron in an asymmetric quantum well, J. Phys.: Condens. Matter 4(49), 9769 (1992)
doi: 10.1088/0953-8984/4/49/005
4 F. H. Stillinger, Axiomatic basis for spaces with non integer dimension, J. Math. Phys. 18(6), 1224 (1977)
doi: 10.1063/1.523395
5 X. F. He, Excitons in anisotropic solids: The model of fractional dimensional space, Phys. Rev. B 43(3), 2063 (1991)
doi: 10.1103/PhysRevB.43.2063
6 H. Mathieu, P. Lefebvre, and P. Christol, Simple analytical method for calculating exciton binding energies in semiconductor quantum wells, Phys. Rev. B 46(7), 4092 (1992)
doi: 10.1103/PhysRevB.46.4092
7 P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
doi: 10.1103/PhysRevB.46.13603
8 P. Christol, P. Lefebvre, and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
doi: 10.1063/1.354224
9 P. Lefebvre, P. Christol, H. Mathieu, and S. Glutsch, Confined excitons in semiconductors: Correlation between binding energy and spectral absorption shape, Phys. Rev. B 52(8), 5756 (1995)
doi: 10.1103/PhysRevB.52.5756
10 M. Dios-Leyva, A. Bruno Alfonso, A. Matos-Abiague, and L. E. Oliveira, Excitonic and shallow-donor states in semiconducting quantum wells: A fractional dimensional space approach, J. Phys.: Condens. Matter 9(40), 8477 (1997)
doi: 10.1088/0953-8984/9/40/014
11 A. Matos-Abiague, L. E. Oliveira, and M. de Dios-Leyva, Fractional-dimensional approach for excitons in GaAs- Ga1-xAlxAs quantum wells, Phys. Rev. B 58(7), 4072 (1998)
doi: 10.1103/PhysRevB.58.4072