Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  0, Vol. Issue (): 107801   https://doi.org/10.1007/s11467-015-0491-z
  RESEARCH ARTICLE 本期目录
Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air
Cao Li-Ping(曹丽萍)1,2(),Chen Zhan-Dong(陈战东)1,Zhang Chun-Ling(张春玲)1,Yao Jiang-Hong(姚江宏)1,*()
1. The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
2. Department of Physics, Kashgar Teachers College, Kashgar, Xinjiang 844000, China
 全文: PDF(584 KB)  
Abstract

The optical absorption properties of femtosecond-laser-made “black silicon” as a function of the annealing conditions were investigated. We found that the annealing process changes the surface morphology and absorption spectroscopy of the “black silicon” samples, and obtained a maximum sub-band-gap absorptance value of approximately 30% by annealing at 1000 °C for 30 min. The thermal relaxation and atomic structural transformation mechanisms are used to describe the lattice recovery and the increase and decrease of the substitutional dopant atom concentration in the microstructured surface during the annealing. Our results confirm that: i) owing to the thermal relaxation, the lattice defects decrease with the increase of the annealing temperature; ii) the quasi-substitutional and interstitial configurations of the doped atoms transform into substitutional arrangements when the annealing temperature increases; iii) the quasi-substitutional and interstitial configurations with higher energies of the doped atoms transform into interstitial configurations with the lowest energy after high-temperature annealing for a long period of time, causing the deactivation or reactivation of the sub-band-gap absorptance by diffusion. The results demonstrate that the annealing can improve the properties of “black silicon”, including defects repairing, carrier lifetime lengthening, and retention of a high absorptive performance.

Key wordssub-band-gap absorptance    black silicon    annealing    diffusion
收稿日期: 2015-01-21      出版日期: 2015-08-17
Corresponding Author(s): Yao Jiang-Hong(姚江宏)   
 引用本文:   
. [J]. Frontiers of Physics, 0, (): 107801.
Cao Li-Ping(曹丽萍), Chen Zhan-Dong(陈战东), Zhang Chun-Ling(张春玲), Yao Jiang-Hong(姚江宏). Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air. Front. Phys. , 0, (): 107801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0491-z
https://academic.hep.com.cn/fop/CN/Y0/V/I/107801
1 T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12), 1673 (1998)
https://doi.org/10.1063/1.122241
2 R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, and C. M. Friend, Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses, J. Appl. Phys. 93(5), 2626 (2003)
https://doi.org/10.1063/1.1545159
3 T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Appl. Phys., A Mater. Sci. Process. 70(4), 383 (2000)
https://doi.org/10.1007/s003390051052
4 M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask, Appl. Phys. Lett. 82(11), 1715 (2003)
https://doi.org/10.1063/1.1561162
5 M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water, Appl. Phys. Lett. 85(23), 5694 (2004)
https://doi.org/10.1063/1.1828575
6 D. Tran, Y. C. Lam, H. Zheng, V. Murukeshan, J. Chai, and D. E. Hardt, Femtosecond laser processing of crystalline silicon, http://hdl.handle.net/1721.1/7449 (2005)
7 H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, Nanostructured black silicon and the optical reflectance of graded-density surfaces, Appl. Phys. Lett. 94(23), 231121 (2009)
https://doi.org/10.1063/1.3152244
8 T. Chen, J. Si, X. Hou, S. Kanehira, K. Miura, and K. Hirao, Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses, J. Appl. Phys. 110(7), 073106 (2011)
https://doi.org/10.1063/1.3641976
9 J. T. Sullivan, R. G. Wilks, M. T. Winkler, L. Weinhardt, D. Recht, A. J. Said, B. K. Newman, Y. Zhang, M. Blum, S. Krause, W. L. Yang, C. Heske, M. J. Aziz, M. B?r, and T. Buonassisi, Soft x-ray emission spectroscopy studies of the electronic structure of silicon supersaturated with sulfur, Appl. Phys. Lett. 99(14), 142102 (2011)
https://doi.org/10.1063/1.3643050
10 M. T. Winkler, M. J. Sher, Y. T. Lin, M. J. Smith, H. Zhang, S. Grade?ak, and E. Mazur, Studying femtosecond-laser hy-perdoping by controlling surface morphology, J. Appl. Phys. 111(9), 093511 (2012)
https://doi.org/10.1063/1.4709752
11 Z. D. Chen, Q. Wu, M. Yang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Opt. Express 21(18), 21329 (2013)
https://doi.org/10.1364/OE.21.021329
12 C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, Near-unity below-band-gap absorption by microstructured silicon, Appl. Phys. Lett. 78(13), 1850 (2001)
https://doi.org/10.1063/1.1358846
13 J. E. Carey, C. H. Crouch, and E. Mazur, Femtosecond-laserassisted microstructuring of silicon surfaces, Opt. Photonics News 14(2), 32 (2003)
https://doi.org/10.1364/OPN.14.2.000032
14 J. E. Carey and E. Mazur, Femtosecond laser-assisted microstructuring of silicon for novel detector, sensing and display technologies, in: Lasers and Electro-Optics Society, 2003 (LEOS 2003). The 16th Annual Meeting of the IEEE, 481 (2003)
https://doi.org/10.1109/leos.2003.1252883
15 B. K. Nayak, V. V. Iyengar, and M. C. Gupta, Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures, Prog. Photovolt. Res. Appl. 19(6), 631 (2011)
https://doi.org/10.1002/pip.1067
16 Z. D. Chen, Q. Wu, M. Yang, B. Tang, J. H. Yao, R. A. Rupp, Y. A. Cao, and J. J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser Part. Beams 31(03), 539 (2013)
https://doi.org/10.1017/S0263034613000281
17 L. Nesbit, Annealing characteristics of Si-rich SiO2 films, Appl. Phys. Lett. 46(1), 38 (1985)
https://doi.org/10.1063/1.95842
18 S. Kosowsky, P. S. Pershan, K. Krisch, J. Bevk, M. Green, D. Brasen, L. Feldman, and P. Roy, Evidence of annealing effects on a high-density Si/SiO2 interfacial layer, Appl. Phys. Lett. 70(23), 3119 (1997)
https://doi.org/10.1063/1.119090
19 G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K. Lynn, A. Gambhir, L. Di Mauro, and C. Bottani, Effect of different preparation conditions on light emission from silicon implanted SiO2 layers, J. Appl. Phys. 79(11), 8660 (1996)
https://doi.org/10.1063/1.362490
20 C. Wu, C. H. Crouch, L. Zhao, and E. Mazur, Visible luminescence from silicon surfaces microstructured in air, Appl. Phys. Lett. 81(11), 1999 (2002)
https://doi.org/10.1063/1.1504868
21 J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes, Opt. Lett. 30(14), 1773 (2005)
https://doi.org/10.1364/OL.30.001773
22 R. A. Myers, R. Farrell, A. M. Karger, J. E. Carey, and E. Mazur, Enhancing near-infrared avalanche photodiode performance by femtosecond laser microstructuring, Appl. Opt. 45(35), 8825 (2006)
https://doi.org/10.1364/AO.45.008825
23 T. G. Kim, J. M. Warrender, and M. J. Aziz, Strong subband-gap infrared absorption in silicon supersaturated with sulfur, Appl. Phys. Lett. 88(24), 241902 (2006)
https://doi.org/10.1063/1.2212051
24 M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, Role of the background gas in the morphology and optical properties of laser-microstructured silicon, Chem. Mater. 17(14), 3582 (2005)
https://doi.org/10.1021/cm049029i
25 B. R. Tull, M. T. Winkler, and E. Mazur, The role of diffusion in broadband infrared absorption in chalcogen-doped silicon, Appl. Phys. A, Mater. Sci. Process. 96(2), 327 (2009)
https://doi.org/10.1007/s00339-009-5200-8
26 B. K. Newman, M. J. Sher, E. Mazur, and T. Buonassisi, Reactivation of sub-bandgap absorption in chalcogenhyperdoped silicon, Appl. Phys. Lett. 98(25), 251905 (2011)
https://doi.org/10.1063/1.3599450
27 M. J. Smith, Y. T. Lin, M. J. Sher, M. T. Winkler, E. Mazur, and S. Grade?ak, Pressure-induced phase transformations during femtosecond-laser doping of silicon, J. Appl. Phys. 110(5), 053524 (2011)
https://doi.org/10.1063/1.3633528
28 B. K. Newman, E. Ertekin, J. T. Sullivan, M. T. Winkler, M. A. Marcus, S. C. Fakra, M. J. Sher, E. Mazur, J. C. Grossman, and T. Buonassisi, Extended X-ray absorption fine structure spectroscopy of selenium-hyperdoped silicon, J. Appl. Phys. 114(13), 133507 (2013)
https://doi.org/10.1063/1.4824279
29 H. Shao, Y. Li, J. Zhang, B. Y. Ning, W. Zhang, X. J. Ning, L. Zhao, and J. Zhuang, Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon, Europhys. Lett. 99(4), 46005 (2012)
https://doi.org/10.1209/0295-5075/99/46005
30 J. Zhu, G. Yin, M. Zhao, D. Chen, and L. Zhao, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Appl. Surf. Sci. 245(1-4), 102 (2005)
https://doi.org/10.1016/j.apsusc.2004.09.113
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed