Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2015, Vol. 10 Issue (4): 100507-    DOI: 10.1007/s11467-015-0501-1
  RESEARCH ARTICLE 本期目录 |  
Quadrupolar matter-wave soliton in two-dimensional free space
Jia-Sheng Huang1,Xun-Da Jiang1,Huai-Yu Chen1,Zhi-Wei Fan1,Wei Pang2,Yong-Yao Li1,*()
1. Department of Applied Physics, College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
2. Department of Experiment Teaching, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(353 KB)  
Abstract

We study two-dimensional (2D) matter-wave solitons in the mean-field models formed by electric quadrupole particles with long-range quadrupole–quadrupole interaction (QQI) in 2D free space. The existence of 2D matter-wave solitons in the free space was predicted using the 2D Gross–Pitaevskii Equation (GPE). We find that the QQI solitons have a higher mass (smaller size and higher intensity) and stronger anisotropy than the dipole–dipole interaction (DDI) solitons under the same environmental parameters. Anisotropic soliton–soliton interaction between two identical QQI solitons in 2D free space is studied. Moreover, stable anisotropic dipole solitons are observed, to our knowledge, for the first time in 2D free space under anisotropic nonlocal cubic nonlinearity.

Key words2D matter-wave solitons    quadrupole - quadrupole interaction    anisotropy soliton - soliton interaction    dipole solitons
收稿日期: 2015-05-14      出版日期: 2015-08-17
引用本文:   
. [J]. Frontiers of Physics, 2015, 10(4): 100507-.
Jia-Sheng Huang, Xun-Da Jiang, Huai-Yu Chen, Zhi-Wei Fan, Wei Pang, Yong-Yao Li. Quadrupolar matter-wave soliton in two-dimensional free space. Front. Phys. , 2015, 10(4): 100507-.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0501-1      或      http://academic.hep.com.cn/fop/CN/Y2015/V10/I4/100507
1 L. P. Pitaevskii and S. Sandro, Bose–Einstein Condensation, No. 116, Oxford University Press, 2003
2 S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and K. Sengstock, Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)
doi: 10.1103/PhysRevLett.83.5198
3 S. Song, L. Wen, C. Liu, S. Gou, and W. Liu, Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates, Front. Phys. 8(3), 302 (2013)
doi: 10.1007/s11467-013-0350-8
4 B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, Watching dark solitons decay into vortex rings in a Bose–Einstein condensate, Phys. Rev. Lett. 86(14), 2926 (2001)
doi: 10.1103/PhysRevLett.86.2926
5 J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science 292(5516), 476 (2001)
doi: 10.1126/science.1060182
6 F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose-Einstein condensates, Science 293(5531), 843 (2001)
doi: 10.1126/science.1062612
7 C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64(5), 053604 (2001)
doi: 10.1103/PhysRevA.64.053604
8 C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)
doi: 10.1007/s11467-011-0228-6
9 C. Lee, Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled two-component Bose–Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)
doi: 10.1103/PhysRevLett.102.070401
10 H. Zheng and Q. Gu, Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with double-well potential, Front. Phys. 8(4), 375 (2013)
doi: 10.1007/s11467-013-0321-0
11 Y. Li, J. Liu, W. Pang, and B. A. Malomed, Symmetry breaking in dipolar matter-wave solitons in dual-core couplers, Phys. Rev. A 87(1), 013604 (2013)
doi: 10.1103/PhysRevA.87.013604
12 Y. Li, W. Pang, and B. A. Malomed, Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A 86(2), 023832 (2012)
doi: 10.1103/PhysRevA.86.023832
13 J. Denschlag, Generating solitons by phase engineering of a Bose–Einstein condensate, Science 287, 97 (2000)
doi: 10.1126/science.287.5450.97
14 Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-wave bright soliton, Science 296, 1290 (2002)
doi: 10.1126/science.1071021
15 Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering, Phys. Rev. Lett. 81, 69 (1998)
doi: 10.1103/PhysRevLett.81.69
16 M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. Hecker Denschlag, Tuning the scattering length with an optically induced Feshbach resonance, Phys. Rev. Lett. 93(1), 123001 (2004)
doi: 10.1103/PhysRevLett.93.123001
17 X. Zhang, X. Hu, D. Wang, X. Liu, and W. Liu, Dynamics of Bose-Einstein condensates near Feshbach resonance in external potential, Front. Phys. China 6(1), 46 (2011)
doi: 10.1007/s11467-010-0150-3
18 S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn and W. Ketterle, Observation of Feshbach resonances in a Bose–Einstein condensate, Nature 293(6672), 151 (1998)
19 P. Courteille, R. S. Freeland, D. J. He inzen, F. A. van Abeelen and B. J. Verhaar, Observation of Feshbach resonances in cold atom scattering, Phys. Rev. Lett. 81, 69 (1998)
doi: 10.1103/PhysRevLett.81.69
20 J. Huang, H. Li, X. Zhang, and Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects, Front. Phys. 10(2), 104201 (2015)
doi: 10.1007/s11467-014-0452-y
21 Z. Chen, J. Huang, J. Chai, X. Zhang, Y. Li, and B. A. Malomed, Discrete solitons in self-defocusing systems with PT-symmetric defects, Phys. Rev. A 91(5), 053821 (2015)
doi: 10.1103/PhysRevA.91.053821
22 M. Saha, A. K. Sarma, Modulation instability in nonlinear metamaterials induced by cubic–quintic nonlinearities and higher order dispersive effects, Opt. Commun. 291, 321 (2013)
doi: 10.1016/j.optcom.2012.11.011
23 J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422(6928), 147 (2003)
doi: 10.1038/nature01452
24 G. Chen, Z. Hong, and Z. Mai, Two-dimensional discrete Anderson location in waveguide matrix, J. Nonlinear Optic. Phys. Mat. 23(03), 1450033 (2014)
doi: 10.1142/S0218863514500337
25 X. Zhang, J. Chai, D. Ou, and Y. Li, Antisymmetry breaking of discrete dipole gap solitons induced by a phase-slip defect, Mod. Phys. Lett. B 28(12), 1450097 (2014)
doi: 10.1142/S0217984914500973
26 N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003)
doi: 10.1103/PhysRevA.67.063608
27 N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, Two-dimensional optical lattice solitons, Phys. Rev. Lett. 91(21), 213906 (2003)
doi: 10.1103/PhysRevLett.91.213906
28 W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
doi: 10.1143/JPSJ.80.113401
29 J. T. Cole and Z. H. Musslimani, Band gaps and lattice solitons for the higher-order nonlinear Schr?dinger equation with a periodic potential, Phys. Rev. A 90(1), 013815 (2014)
doi: 10.1103/PhysRevA.90.013815
30 X. Gan, P. Zhang, S. Liu, F. Xiao, and J. Zhao, Beam steering and topological transformations driven by interactions between a discrete vortex soliton and a discrete fundamental soliton, Phys. Rev. A 89(1), 013844 (2014)
doi: 10.1103/PhysRevA.89.013844
31 G. Chen, H. Huang, and M. Wu, Solitary vortices in twodimensional waveguide matrix, J. Nonlinear Optic. Phys. Mat. 24(01), 1550012 (2015)
doi: 10.1142/S0218863515500125
32 G. Chen, H. Huang, and M. Wu, Discrete vortices on anisotropic lattices, Front. Phys. 10, 104206 (2015)
doi: 10.1007/s11467-015-0494-9
33 R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Low, and T. Pfau, Rydberg excitation of Bose–Einstein condensates, Phys. Rev. Lett. 100(3), 033601 (2008)
doi: 10.1103/PhysRevLett.100.033601
34 M. Viteau, M. G. Bason, J. Radogostowicz, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo, Rydberg excitations in Bose–Einstein condensates in quasi-one-dimensional potentials and optical lattices, Phys. Rev. Lett. 107(6), 060402 (2011)
doi: 10.1103/PhysRevLett.107.060402
35 S. Giovanazzi, A. Gorlitz, and T. Pfau, Tuning the dipolar interaction in quantum gases, Phys. Rev. Lett. 89(13), 130401 (2002)
doi: 10.1103/PhysRevLett.89.130401
36 P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
doi: 10.1103/PhysRevLett.95.200404
37 T. Koch, T. Lahaye, J. Metz, B. Frohlich, A. Griesmaier, and T. Pfau, Stabilization of a purely dipolar quantum gas against collapse, Nat. Phys. 4(3), 218 (2008)
doi: 10.1038/nphys887
38 I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
doi: 10.1103/PhysRevLett.100.090406
39 Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matter-wave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)
doi: 10.1103/PhysRevA.88.053630
40 Z. Luo, Y. Li, W. Pang, and Y. Liu, Dipolar matter-wave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities, J. Phys. Soc. Jpn. 82(9), 094401 (2013)
doi: 10.7566/JPSJ.82.094401
41 S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Extreme tunability of interactions in a Li7 Bose–Einstein condensate, Phys. Rev. Lett. 102(9), 090402 (2009)
doi: 10.1103/PhysRevLett.102.090402
42 L. P. Pitaevskii and A. Stringari, Bose–Einstein condensation, Clarendon Press, Oxford, 2003
43 Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A 88(6), 063635 (2013)
doi: 10.1103/PhysRevA.88.063635
44 L. D. Landau and E. M. Lifshitz, The Field Theory, Nauka-Publishers, Moscow, 1988
45 H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
doi: 10.1103/PhysRevA.81.013624
46 X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice waves in guiding arrays with a nonlinear PT -symmetric defect, Opt. Exp. 22(11), 13927 (2014)
doi: 10.1364/OE.22.013927
47 M. L. Chiofalo, S. Succi, and M. P. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E 62(5), 7438 (2000)
doi: 10.1103/PhysRevE.62.7438
48 J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265 (2008)
doi: 10.1111/j.1467-9590.2008.00398.x
49 J. Yang and T. I. Lakoba, Universally-convergent squaredoperator iteration methods for solitary waves in general nonlinear wave equations, Stud. Appl. Math. 118(2), 153 (2007)
doi: 10.1111/j.1467-9590.2007.00371.x
50 G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2007
51 Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of PT -symmetric couplers, Opt. Exp. 22(24), 029679 (2014)
doi: 10.1364/OE.22.029679
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed