Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (2): 116803   https://doi.org/10.1007/s11467-015-0534-5
  本期目录
Direct growth of graphene on gallium nitride using C2H2 as carbon source
Bing Wang (王兵)(),Yun Zhao (赵云),Xiao-Yan Yi (伊晓燕)(),Guo-Hong Wang (王国宏),Zhi-Qiang Liu (刘志强),Rui-Rei Duan (段瑞飞),Peng Huang (黄鹏),Jun-Xi Wang (王军喜),Jin-Min Li (李晋闽)
Semiconductor Lighting Technology R&D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
 全文: PDF(343 KB)  
Abstract

Growing graphene on gallium nitride (GaN) at temperatures greater than 900°C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830°C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.

Key wordsgraphene    C2H2    gallium nitride    chemical vapor deposition    Raman spectroscopy
收稿日期: 2015-07-27      出版日期: 2016-04-29
Corresponding Author(s): Bing Wang (王兵),Xiao-Yan Yi (伊晓燕)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(2): 116803.
Bing Wang (王兵),Yun Zhao (赵云),Xiao-Yan Yi (伊晓燕),Guo-Hong Wang (王国宏),Zhi-Qiang Liu (刘志强),Rui-Rei Duan (段瑞飞),Peng Huang (黄鹏),Jun-Xi Wang (王军喜),Jin-Min Li (李晋闽). Direct growth of graphene on gallium nitride using C2H2 as carbon source. Front. Phys. , 2016, 11(2): 116803.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0534-5
https://academic.hep.com.cn/fop/CN/Y2016/V11/I2/116803
1 S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors., Nat. Mater. 5(10), 810 (2006)
https://doi.org/10.1038/nmat1726
2 S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes., Science 281(5379), 955 (1998)
https://doi.org/10.1126/science.281.5379.956
3 R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, and R. Lin, Mand Lu Y C, Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells, IEEE Electron Device Lett. 30(7), 724 (2009)
https://doi.org/10.1109/LED.2009.2021414
4 U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
https://doi.org/10.1109/JPROC.2002.1021567
5 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X.Y. Jiang, Z.Y. Tang, H.X. Xu, Z.X. Wei, Y.Q.Liu, M.H. Liu, L. Jiang, X.H. Bao, L.J. Wan, and C.L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
https://doi.org/10.1007/s11467-013-0324-x
6 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene., Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
7 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene., Science 313(5789), 951 (2006)
https://doi.org/10.1126/science.1130681
8 F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Phase-coherent transport in graphene quantum billiards., Science 317(5844), 1530 (2007)
https://doi.org/10.1126/science.1144359
9 K. I. Bolotin, S. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, P. Hone Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), 351 (2008)
https://doi.org/10.1016/j.ssc.2008.02.024
10 G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material., Nat. Nanotechnol. 3(5), 270 (2008)
https://doi.org/10.1038/nnano.2008.83
11 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, J. Phys. Chem. B 108(52), 19912 (2004)
https://doi.org/10.1021/jp040650f
12 M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons., Phys. Rev. Lett. 98(20), 206805 (2007)
https://doi.org/10.1103/PhysRevLett.98.206805
13 P. Neil, Dasgupta, Peidong Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
https://doi.org/10.1007/s11467-013-0305-0
14 X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells., Nano Lett. 8(1), 323 (2008)
https://doi.org/10.1021/nl072838r
15 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-based liquid crystal device., Nano Lett. 8(6), 1704 (2008)
https://doi.org/10.1021/nl080649i
16 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene., Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
17 J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes., ACS Nano 4(1), 43 (2010)
https://doi.org/10.1021/nn900728d
18 T. Mueller, F. N. Xia, and P. Avouris, Graphene photo detectors for high-speed optical communications, Nat. Photonics 4(5), 297 (2010)
https://doi.org/10.1038/nphoton.2010.40
19 H. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C.W. Shi, and L.Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
https://doi.org/10.1007/s11467-013-0343-7
20 N. Liu, W. Li, M. Pasta, and Y. Cui, Mauro Pasta, Yi Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
https://doi.org/10.1007/s11467-013-0408-7
21 Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
https://doi.org/10.1007/s11467-013-0308-x
22 H. Ueta, H. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Highly oriented monolayer graphite formation on Pt(1 1 1) by a supersonic methane beam, Surf. Sci. 560(1-3), 183 (2004)
https://doi.org/10.1016/j.susc.2004.04.039
23 N. Gall, E. Rut’kov, and A. Tontegode, Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution, Phys. Solid State 46(2), 371 (2004)
https://doi.org/10.1134/1.1649439
24 S. Marchini, S. Günther, and J. Wintterlin, Gunther S and Wintterlin J, Scanning tunneling microscopy of graphene on Ru(0001), Phys. Rev. B 76(7), 075429 (2007)
https://doi.org/10.1103/PhysRevB.76.075429
25 J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111)., Nano Lett. 8(2), 565 (2008)
https://doi.org/10.1021/nl0728874
26 A. L. Vázquez de Parga, F. Calleja, B. Borca, J. J. Passeggi, F. Hinarejos, F. Guinea, and R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure., Phys. Rev. Lett. 100(5), 056807 (2008)
https://doi.org/10.1103/PhysRevLett.100.056807
27 P. W. Sutter, J. I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium., Nat. Mater. 7(5), 406 (2008)
https://doi.org/10.1038/nmat2166
28 Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper., Science 342(6159), 720 (2013)
https://doi.org/10.1126/science.1243879
29 Z. Yun, W. Gang, and H. C. Yang, An Tie-Lei, Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst, Chin. Phys. B 23(9), 096802 (2014)
https://doi.org/10.1088/1674-1056/23/9/096802
30 Y. S. Kim, J. H. Lee, Y. D. Kim, S. K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y. D. Park, S. Seo, and S. H. Chun, Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition., Nanoscale 5(3), 1221 (2013)
https://doi.org/10.1039/c2nr33034b
31 M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal. 131(1), 60 (1991)
https://doi.org/10.1016/0021-9517(91)90323-V
32 M. Furtado, and G. Jacob, Study on the influence of annealing effects in GaN VPE, J. Cryst. Growth 64(2), 257 (1983)
https://doi.org/10.1016/0022-0248(83)90132-X
33 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers., Phys. Rev. Lett. 97(18), 187401 (2006)
https://doi.org/10.1103/PhysRevLett.97.187401
34 L. Tao, C. Y. Qiu, F. Yu, H. C. Yang, M. J. Chen, G. Wang, and L. F. Sun, Modification on Single-Layer Graphene Induced by Low-Energy Electron-Beam Irradiation, J. Phys. Chem. C 117(19), 10079 (2013)
https://doi.org/10.1021/jp312075v
35 M. M. Qin, W. Ji, Y. Y. Feng, and W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B 23(2), 028103 (2014)
https://doi.org/10.1088/1674-1056/23/2/028103
36 I. Calizo, I. Bejenari, M. Rahman, G. X. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, J. Appl. Phys. 106(4), 043509 (2009)
https://doi.org/10.1063/1.3197065
37 Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy., Small 6(2), 195 (2010)
https://doi.org/10.1002/smll.200901173
38 G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films., Nanotechnology 21(14), 145604 (2010)
https://doi.org/10.1088/0957-4484/21/14/145604
39 M. Regmi, M. F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50(1), 134 (2012)
https://doi.org/10.1016/j.carbon.2011.07.063
40 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils., Science 324(5932), 1312 (2009)
https://doi.org/10.1126/science.1171245
41 P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, and B. Caussat, 0, Caroline Rabot b, Hugues Vergnes a, High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surf. Coat. Tech. 230, 87 (2013)
https://doi.org/10.1016/j.surfcoat.2013.06.050
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed