Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2016, Vol. 11 Issue (3): 114701-    DOI: 10.1007/s11467-015-0546-1
  本期目录 |  
Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces
Liang Yin1,Hai-Feng Zhang1,2,*(),Shu-Yuan Shi1,Yao Lu1,Yang Wang,Xiao-Wei Liu1,2
1. MEMS Center, Harbin Institute of Technology, Harbin 150001, China
2. Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin 150001, China
全文: PDF(419 KB)  
Abstract

This paper proposes a novel bubble model to analyze drag reduction. The relationship between the slip length and air bubble height is discussed. The numerical relationship between the surface contact angle and slip length is obtained using the solid-liquid contact ratio in the Cassie equation. The surface drag reduction ratio increases by 40% at low velocities when the solid liquid contact ratio decreases from 90% to 10%. An experimental setup to study liquid/solid friction drag is reported. The drag reduction ratio for the superhydrophobic surface tested experimentally is 30%–35% at low velocities. These results are similar to the simulation results obtained at low velocities.

Key wordsdrag reduction    air bubble    slip length    fraction    superhydrophobic
收稿日期: 2015-08-01      出版日期: 2016-06-08
引用本文:   
. [J]. Frontiers of Physics, 2016, 11(3): 114701-.
Liang Yin,Hai-Feng Zhang,Shu-Yuan Shi,Yao Lu,Yang Wang,Xiao-Wei Liu. Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces. Front. Phys. , 2016, 11(3): 114701-.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0546-1      或      http://academic.hep.com.cn/fop/CN/Y2016/V11/I3/114701
1 Y. L. Zhang, H. Xia, E. Kim, and H. B. Sun, Recent developments in superhydrophobic surfaces with unique structural and functional properties, Soft Matter 8(44), 11217 (2012)
doi: 10.1039/c2sm26517f
2 C. H. Xue, S. T. Jia, J. Zhang, and J. Z. Ma, Large-area fabrication of superhydrophobic surfaces for practical applications: An overview, Sci. Technol. Adv. Mater. 11(3), 033002 (2010)
doi: 10.1088/1468-6996/11/3/033002
3 G. McHale, M. Newton, and N. Shirtcliffe, Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties, Soft Matter 6(4), 714 (2010)
doi: 10.1039/B917861A
4 Y. Zhao, Y. Song, W. Song, W. Liang, X. Jiang, Z. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
doi: 10.1007/s11467-013-0324-x
5 N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic andphotoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
doi: 10.1007/s11467-013-0305-0
6 P. Tao, W. Shang, C. Song, Q. Shen, F. Zhang, Z. Luo, N. Yi, D. Zhang, and T. Deng, Bioinspired engineering of thermal materials, Adv. Mater. 27(3), 428 (2015)
doi: 10.1002/adma.201401449
7 J. Wang, M. Liu, R. Ma, Q. Wang, and L. Jiang, In situ wetting state transition on micro- and nanostructured surfaces at high temperature, ACS Appl. Mater. Interfaces 6(17), 15198 (2014)
doi: 10.1021/am5034457
8 U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, Bioinspired structural materials, Nat. Mater. 14(1), 23 (2014)
doi: 10.1038/nmat4089
9 W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salviniaparadox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22(21), 2325 (2010)
doi: 10.1002/adma.200904411
10 S. Lyu, D. C. Nguyen, D. Kim, W. Hwang, and B. Yoon, Experimental drag reduction study of super-hydrophobic surface with dual-scale structures, Appl. Surf. Sci. 286, 206 (2013)
doi: 10.1016/j.apsusc.2013.09.048
11 J. Cui, W. Li, and W. Lam, Numerical investigation on drag reduction with superhydrophobic surfaces by lattice-Boltzmann method, Comput. Math. Appl. 61(12), 3678 (2011)
doi: 10.1016/j.camwa.2010.07.037
12 Y. Gan, A. Xu, G. Zhang, and Y. Li, Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions, Front. Phys. 7(4), 481 (2012)
doi: 10.1007/s11467-012-0245-0
13 K. Fukagata, N. Kasagi, and P. Koumoutsakos, A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces, Phys. Fluids 18(5), 051703 (2006)
doi: 10.1063/1.2205307
14 E. Lauga and H. A. Stone, Effective slip in pressure-driven Stokes flow, J. Fluid Mech. 489, 55 (2003)
doi: 10.1017/S0022112003004695
15 J. Davies, D. Maynes, B. W. Webb, and B. Woolford, Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs, Phys. Fluids 18(8), 087110 (2006)
doi: 10.1063/1.2336453
16 Y. P. Cheng, C. J. Teo, and B. C. Khoo, Microchannel flows with superhydrophobic surfaces: Effects of Reynolds number and pattern width to channel height ratio, Phys. Fluids 21(12), 122004 (2009)
doi: 10.1063/1.3281130
17 J. Yang, J. Duan, D. Fornasiero, and J. Ralston, Very small bubble formation at the solid-water interface, J. Phys. Chem. B 107(25), 6139 (2003)
doi: 10.1021/jp0224113
18 J. Wang, H. Chen, T. Sui, A. Li, and D. Chen, Investigation on hydrophobicity of lotus leaf: Experiment and theory, Plant Sci. 176(5), 687 (2009)
doi: 10.1016/j.plantsci.2009.02.013
19 S. R. German, X. Wu, H. An, V. S. J. Craig, T. L. Mega, and X. Zhang, Interfacial nanobubbles are leaky: Permeability of the gas/water interface, ACS Nano 8(6), 6193 (2014)
doi: 10.1021/nn5016049
20 X. Zhang, A. Quinn, and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir 24(9), 4756 (2008)
doi: 10.1021/la703475q
21 J. Wang, B. Wang, and D. Chen, Underwater drag reduction by gas, Friction 2(4), 295 (2014)
doi: 10.1007/s40544-014-0070-2
22 K. Mohanarangam, S. C. P. Cheung, J. Y. Tu, and L. Chen, Numerical simulation of micro-bubble drag reduction using population balance model, Ocean Eng. 36(11), 863 (2009)
doi: 10.1016/j.oceaneng.2009.05.001
23 P. P. Modi and S. Jayanti, Pressure losses and flow maldistribution in ducts with sharp bends, Chem. Eng. Res. Des. 82(3), 321 (2004)
doi: 10.1205/026387604322870435
24 B. M. Borkent, S. M. Dammer, H. Schonherr, G. J. Vancso, and D. Lohse, Superstability of surface nanobubbles, Phys. Rev. Lett. 98(20), 204502 (2007)
doi: 10.1103/PhysRevLett.98.204502
25 P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet, Slippage of water past superhydrophobic carbon nanotube forests in microchannels, Phys. Rev. Lett. 97(15), 156104 (2006)
doi: 10.1103/PhysRevLett.97.156104
26 A. Steinberger, C. Cottin-Bizonne, P. Kleimann, and E. Charlaix, High friction on a bubble mattress, Nat. Mater. 6(9), 665 (2007)
doi: 10.1038/nmat1962
27 C. Lee and C. J. Kim, Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls, Langmuir 25(21), 12812 (2009)
doi: 10.1021/la901824d
28 J. Hyväluoma and J. Harting, Slip flow over structured surfaces with entrapped microbubbles, Phys. Rev. Lett. 100(24), 246001 (2008)
doi: 10.1103/PhysRevLett.100.246001
29 S. Richardson, No-slip boundary condition, J. Fluid Mech. 59(04), 707 (1973)
doi: 10.1017/S0022112073001801
30 K. M. Jansons, Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition, Phys. Fluids 31(1), 15 (1988)
doi: 10.1063/1.866563
31 Y. Wang, X. W. Liu, H. F. Zhang, and Z. P. Zhou, Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water, RSC Advances 5(24), 18909 (2015)
doi: 10.1039/C5RA00941C
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed