Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 110503   https://doi.org/10.1007/s11467-016-0575-4
  本期目录
Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials
Ting-Hua Li (李廷华)1,2,Dong-Lai Zhu(朱东来)1,Fu-Chun Mao(毛福春)2,Ming Huang(黄铭)2,*(),Jing-Jing Yang(杨晶晶)2,Shou-Bo Li1
1. Technical Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
2. School of Information Science and Engineering, Yunnan University, Kunming 650091, China
 全文: PDF(506 KB)  
Abstract

Transformation thermodynamics as a major extension of transformation optics has recently received considerable attention. In this paper, we present two-dimensional (2D) and three-dimensional (3D) diamond-shaped transient thermal cloaks with non-singular homogeneous material parameters. The absence of singularity in the parameters results from the fact that the linear coordinate transformation is performed by expanding a line segment rather than a point into a region, while the mechanism behind the homogeneity is the homogeneous stretching and compression along orthogonal directions during the transformation. Although the derived parameters remain anisotropic, we further show that this can be circumvented by considering a layered structure composed of only four types of isotropic materials based on the effective medium theory. Numerical simulation results confirm the good performance of the proposed cloaks.

Key wordstransformation thermodynamics    metamaterials    thermal cloak    effective medium theory
收稿日期: 2015-11-21      出版日期: 2016-06-08
Corresponding Author(s): Ming Huang(黄铭)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 110503.
Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials. Front. Phys. , 2016, 11(5): 110503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0575-4
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/110503
1 J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
https://doi.org/10.1126/science.1125907
2 U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
https://doi.org/10.1126/science.1126493
3 H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater. 9(5), 387 (2010)
https://doi.org/10.1038/nmat2743
4 D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials, London: Springer-Verlag, 2015
5 W. Li, J. G. Guan, Z. G. Sun, W. Wang, and Q. J. Zhang, A near-perfect invisibility cloak constructed with homogeneous materials, Opt. Express 17(26), 23410 (2009)
https://doi.org/10.1364/OE.17.023410
6 D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. 5(3), 319 (2010)
https://doi.org/10.1007/s11467-010-0010-1
7 M. R. Forouzeshfard and M. Hosseini Farzad, Twin invisibility cloak at a distance and its illusory properties, Plasmonics 10(1), 125 (2015)
https://doi.org/10.1007/s11468-014-9785-1
8 M. M. Sadeghi, H. Nadgaran, and H. Y. Chen, Perfect field concentrator using zero index metamaterials and perfect electric conductors, Front. Phys. 9(1), 90 (2014)
https://doi.org/10.1007/s11467-013-0374-0
9 J. Yi, S. N. Burokur, G. P. Piau, and A. de Lustrac, Coherent beam control with an all-dielectric transformation optics based lens, Sci. Rep. 6, 18819 (2016)
https://doi.org/10.1038/srep18819
10 F. Sun and S. L. He, Overlapping illusions by transformation optics without any negative refraction material, Sci. Rep. 6, 19130 (2016)
https://doi.org/10.1038/srep19130
11 H. Y. Chen and C. T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43(11), 113001 (2010)
https://doi.org/10.1088/0022-3727/43/11/113001
12 M. Farhat, S. Guenneau, and S. Enoch, Ultrabroadband elastic cloaking in thin plates, Phys. Rev. Lett. 103(2), 024301 (2009)
https://doi.org/10.1103/PhysRevLett.103.024301
13 G. R. Mohammadi, A. G. Moghaddam, and R. Mohammadkhani, Coordinate transformations and matter waves cloaking, Phys. Lett. A 380(9–10), 1093 (2016)
https://doi.org/10.1016/j.physleta.2016.01.017
14 W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, Linear transformation optics for plasmonics, J. Opt. Soc. Am. B 29(10), 2659 (2012)
https://doi.org/10.1364/JOSAB.29.002659
15 L. W. Zeng and R. X. Song, Controlling chloride ions diffusion in concrete, Sci. Rep. 3, 3359 (2013)
https://doi.org/10.1038/srep03359
16 U. Leonhardt, Applied physics: Cloaking of heat, Nature 498(7455), 440 (2013)
https://doi.org/10.1038/498440a
17 C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92(25), 251907 (2008)
https://doi.org/10.1063/1.2951600
18 G. X. Yu, Y. F. Lin, G. Q. Zhang, Z. Yu, L. L. Yu, and J. Su, Design of square-shaped heat flux cloaks and concentrators using method of coordinate transformation, Front. Phys. 6(1), 70 (2011)
https://doi.org/10.1007/s11467-010-0142-3
19 T. Z. Yang, L. J. Huang, F. Chen, and W. K. Xu, Heat flux and temperature field cloaks for arbitrarily shaped objects, J. Phys. D Appl. Phys. 46(30), 305102 (2013)
https://doi.org/10.1088/0022-3727/46/30/305102
20 F. C. Mao, T. H. Li, M. Huang, J. J. Yang, and J. C. Chen, Research and design of thermal cloak in arbitary shape, Acta Physica Sinica 63(1), 014401 (2014) (in Chinese)
21 T. C. Han, T. Yuan, B. W. Li, and C. W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Sci. Rep. 3, 1593 (2013)
https://doi.org/10.1038/srep01593
22 S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108(21), 214303 (2012)
https://doi.org/10.1103/PhysRevLett.108.214303
23 E. H. Ooi and V. Popov, Transformation thermodynamics for heat flux management based on segmented thermal cloaks, Eur. Phys. J. Appl. Phys. 63(1), 10903 (2013)
https://doi.org/10.1051/epjap/2013130150
24 S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: Cloaking and concentrating heat flux, Opt. Express 20(7), 8207 (2012)
https://doi.org/10.1364/OE.20.008207
25 R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on transformation thermodynamics: Molding the flow of heat, Phys. Rev. Lett. 110(19), 195901 (2013)
https://doi.org/10.1103/PhysRevLett.110.195901
26 T. C. Han, X. Bai, J. T. L. Thong, B. W. Li, and C. W. Qiu, Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials, Adv. Mater. 26(11), 1731 (2014)
https://doi.org/10.1002/adma.201304448
27 T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112(5), 054302 (2014)
https://doi.org/10.1103/PhysRevLett.112.054302
28 H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. L. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112(5), 054301 (2014)
https://doi.org/10.1103/PhysRevLett.112.054301
29 Y. G. Ma, L. Lan, W. Jiang, F. Sun, and S. L. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Mater. 5(11), e73 (2013)
https://doi.org/10.1038/am.2013.60
30 X. He and L. Z. Wu, Design of two-dimensional open cloaks with finite material parameters for thermodynamics, Appl. Phys. Lett. 102(21), 211912 (2013)
https://doi.org/10.1063/1.4807920
31 Y. Gao and J. P. Huang, Unconventional thermal cloak hiding an object outside the cloak, Europhys. Lett. 104(4), 44001 (2013)
https://doi.org/10.1209/0295-5075/104/44001
32 R. Hu, X. L. Wei, J. Y. Hu, and X. B. Luo, Local heating realization by reverse thermal cloak, Sci. Rep. 4, 3600 (2014)
https://doi.org/10.1038/srep03600
33 D. M. Nguyen, H. Y. Xu, Y. M. Zhang, and B. L. Zhang, Active thermal cloak, Appl. Phys. Lett. 107(12), 121901 (2015)
https://doi.org/10.1063/1.4930989
34 S. Guenneau and C. Amra, Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express 21(5), 6578 (2013)
https://doi.org/10.1364/OE.21.006578
35 T. C. Han, J. J. Zhao, T. Yuan, D. Y. Lei, B. W. Li, and C. W. Qiu, Theoretical realization of an ultra-efficient thermalenergy harvesting cell made of natural materials, Energy Environ. Sci. 6(12), 3537 (2013)
https://doi.org/10.1039/c3ee41512k
36 Y. C. Liu, F. Sun, and S. L. He, Novel thermal lens for remote heating/cooling designed with transformation optics, Opt. Express 24(6), 5683 (2016)
https://doi.org/10.1364/OE.24.005683
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed