Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (1): 129801   https://doi.org/10.1007/s11467-016-0599-9
  本期目录
Determining H0 using a model-independent method
Pu-Xun Wu1,2,*(),Zheng-Xiang Li3,Hong-Wei Yu1
1. Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211, China
2. Center for High Energy Physics, Peking University, Beijing 100080, China
3. Department of Astronomy, Beijing Normal University, Beijing 100875, China
 全文: PDF(302 KB)  
Abstract

By using type Ia supernovae (SNIa) to provide the luminosity distance (LD) directly, which depends on the value of the Hubble constant H0 = 100h km·s−1·Mpc−1, and the angular diameter distance from galaxy clusters or baryon acoustic oscillations (BAOs) to give the derived LD according to the distance duality relation, we propose a model-independent method to determine h from the fact that different observations should give the same LD at a given redshift. Combining the Sloan Digital Sky Survey II (SDSS-II) SNIa from the MLCS2k2 light curve fit and galaxy cluster data, we find that at the 1σ confidence level (CL), h=0.5867±0.0303 for the sample of the elliptical β model for galaxy clusters, and h=0.6199±0.0293 for that of the sphericall β model. The former is smaller than the values from other observations, whereas the latter is consistent with the Planck result at the 2σ CL and agrees very well with the value reconstructed directly from the H(z) data. With the SDSS-II SNIa and BAO measurements, a tighter constraint, h = 0.6683±0.0221, is obtained. For comparison, we also consider the Union 2.1 SNIa from the SALT2 light curve fitting. The results from the Union 2.1 SNIa are slightly larger than those from the SDSS-II SNIa, and the Union 2.1 SNIa+ BAOs give the tightest value. We find that the values from SNIa+ BAOs are quite consistent with those from the Planck and the BAOs, as well as the local measurement from Cepheids and very-low-redshift SNIa.

Key wordsHubble constant    luminosity distance    angular diameter distance
收稿日期: 2016-02-18      出版日期: 2016-08-16
Corresponding Author(s): Pu-Xun Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(1): 129801.
Pu-Xun Wu,Zheng-Xiang Li,Hong-Wei Yu. Determining H0 using a model-independent method. Front. Phys. , 2017, 12(1): 129801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0599-9
https://academic.hep.com.cn/fop/CN/Y2017/V12/I1/129801
1 W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. JrKennicutt, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. G. Hughes, G. D. Illingworth, L. M. Macri, and P. B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble constant, Astrophys. J. 553(1), 47 (2001)
https://doi.org/10.1086/320638
2 A. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730(2), 119 (2011)
https://doi.org/10.1088/0004-637X/730/2/119
3 C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, , Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results, Astrophys. J. Suppl. 208(2), 20 (2013)
https://doi.org/10.1088/0067-0049/208/2/20
4 G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, , Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208(2), 19 (2013)
https://doi.org/10.1088/0067-0049/208/2/19
5 C. L. Bennett, D. Larson, J. L. Weiland, and G. Hinshaw, The 1% concordance Hubble constant, Astrophys. J. 794(2), 135 (2014)
https://doi.org/10.1088/0004-637X/794/2/135
6 E. Calabrese, M. Archidiacono, A. Melchiorri, and B. Ratra, Impact of H0 prior on the evidence for dark radiation, Phys. Rev. D 86(4), 043520 (2012)
https://doi.org/10.1103/PhysRevD.86.043520
7 G. Chen and B. Ratra, Median statistics and the Hubble constant, Publ. Astron. Soc. Pac. 123(907), 1127 (2011)
https://doi.org/10.1086/662131
8 P. A. R. Ade, . (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014)
https://doi.org/10.1051/0004-6361/201321591
9 P. A. R. Ade, . (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589
10 É. Aubourg, . (BOSS Collaboration), Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92(12), 123516 (2015)
https://doi.org/10.1103/PhysRevD.92.123516
11 L. Anderson, E. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj,, The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 galaxy samples, Mon. Not. R. Astron. Soc. 441(1), 24 (2014)
https://doi.org/10.1093/mnras/stu523
12 M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, , Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568, A22 (2014)
https://doi.org/10.1051/0004-6361/201423413
13 V. Marra, L. Amendola, I. Sawicki, and W. Valkenburg, Cosmic variance and the measurement of the local Hubble parameter, Phys. Rev. Lett. 110(24), 241305 (2013)
https://doi.org/10.1103/PhysRevLett.110.241305
14 S. N. Zhang and Y. Z. Ma, Direct measurement of evolving dark energy density and super-accelerating expansion of the universe, arXiv: 1303.6124
15 G. Efstathiou, H0 revisited, Mon. Not. R. Astron. Soc. 440(2), 1138 (2014)
https://doi.org/10.1093/mnras/stu278
16 M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, , Confirmation of a star formation bias in Type Ia supernova distances and its effect on the measurement of the Hubble constant, Astrophys. J. 802, 20 (2015)
https://doi.org/10.1088/0004-637X/802/1/20
17 A. E. Romano and S. A. Vallejo, Directional dependence of the local estimation of H0 and the nonperturbative effects of primordial curvature perturbations, Europhys. Lett. 109(3), 39002 (2015)
https://doi.org/10.1209/0295-5075/109/39002
18 A. E. Romano and S. A. Vallejo, Low red-shift effects of local structure on the Hubble parameter in presence of a cosmological constant, Eur. Phys. J. C 76(4), 216 (2016)
https://doi.org/10.1140/epjc/s10052-016-4033-9
19 D. Spergel, R. Flauger, and R. Hlozek, Planck data reconsidered, Phys. Rev. D 91(2), 023518 (2015)
https://doi.org/10.1103/PhysRevD.91.023518
20 E. M. L. Humphreys, M. J. Reid, J. M. Moran, L. J. Greenhill, and A. L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant, Astrophys. J. 775(1), 13 (2013)
https://doi.org/10.1088/0004-637X/775/1/13
21 F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley- Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF galaxy survey: Baryon acoustic oscillations and the local Hubble constant, Mon. Not. R. Astron. Soc. 416(4), 3017 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19250.x
22 E. A. Kazin, J. Koda, C. Blake, N. Padmanabhan, S. Brough, , The WiggleZ Dark Energy Survey: Improved distance measurements to z= 1 with reconstruction of the baryonic acoustic feature, Mon. Not. R. Astron. Soc. 441(4), 3524 (2014)
https://doi.org/10.1093/mnras/stu778
23 T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, , Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015)
https://doi.org/10.1051/0004-6361/201423969
24 C. H. Chuang, F. Prada, A. J. Cuesta, , The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements and the strong power of $f(z)nsigma_8(z)$ on constraining dark energy, Mon. Not. R. Astron. Soc. 433, 3559 (2013)
https://doi.org/10.1093/mnras/stt988
25 M. D. P. Hemantha, Y. Wang, and C. H. Chuang, Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies, Mon. Not. R. Astron. Soc. 445(4), 3737 (2014)
https://doi.org/10.1093/mnras/stu1997
26 C. Cheng and Q. G. Huang, An accurate determination of the Hubble constant from Baryon Acoustic Oscillation datasets, Sci. China: Phys. Mech. Astron. 58(9), 599801 (2015)
https://doi.org/10.1007/s11433-015-5684-5
27 V. C. Busti, C. Clarkson, and M. Seikel, Evidence for a lower value for H0 from cosmic chronometers data? Mon. Not. R. Astron. Soc. 441(1), L11 (2014)
https://doi.org/10.1093/mnrasl/slu035
28 M. Bonamente, M. K. Joy, S. J. LaRoque, J. E. Carlstrom, E. D. Reese, and K. S. Dawson, Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high redshift galaxy clusters, Astrophys. J. 647(1), 25 (2006)
https://doi.org/10.1086/505291
29 I. Ferreras, A. Pasquali, S. Malhotra, J. Rhoads, S. Cohen, R. Windhorst, N. Pirzkal, N. Grogin, A. M. Koekemoer, T. Lisker, N. Panagia, E. Daddi, and N. P. Hathi, Early-type galaxies in the PEARS survey: Probing the stellar populations at moderate redshift, Astrophys. J. 706(1), 158 (2009)
https://doi.org/10.1088/0004-637X/706/1/158
30 M. Longhetti, P. Saracco, P. Severgnini, R. D. Ceca, F. Mannucci, R. Bender, N. Drory, G. Feulner, and U. Hopp, The Kormendy relation of massive elliptical galaxies at z’ 1:5. Evidence for size evolution? Mon. Not. R. Astron. Soc. 374(2), 614 (2007)
https://doi.org/10.1111/j.1365-2966.2006.11171.x
31 E. Gaztañaga, A. Cabré, and L. Hui, Clustering of Luminous Red Galaxies IV: Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z), Mon. Not. R. Astron. Soc. 399(3), 1663 (2009)
https://doi.org/10.1111/j.1365-2966.2009.15405.x
32 J. Simon, L. Verde, and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71(12), 123001 (2005)
https://doi.org/10.1103/PhysRevD.71.123001
33 D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, Cosmic Chronometers: Constraining the equation of state of dark energy (I): H(z) measurements, J. Cosmol. Astropart. Phys. 2(02), 8 (2010)
https://doi.org/10.1088/1475-7516/2010/02/008
34 D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. S coccimarro, M. R. Blanton, , Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633(2), 560 (2005)
https://doi.org/10.1086/466512
35 J. A. S. Lima and J. V. Cunha, A 3% determination of H0 at intermediate redshifts, Astrophys. J. 781(2), L38 (2014)
https://doi.org/10.1088/2041-8205/781/2/L38
36 R. F. L. Holanda, V. C. Busti, and G. P. da Silva, Robustness of H0 determination at intermediate redshifts, Mon. Not. R. Astron. Soc. 443(1), L74 (2014)
https://doi.org/10.1093/mnrasl/slu086
37 E. De Filippis, M. Sereno, M. W. Bautz, and G. Longo, Measuring the three-dimensional structure of galaxy clusters. 1. Application to a sample of 25 clusters, Astrophys. J. 625(1), 108 (2005)
https://doi.org/10.1086/429401
38 R. Kessler, A. Becker, D. Cinabro, J. Vanderplas, J. A. Frieman, , First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: Hubble diagram and cosmological parameters, Astrophys. J. Suppl. 185(1), 32 (2009)
https://doi.org/10.1088/0067-0049/185/1/32
39 R. Amanullah, C. Lidman, D. Rubin, G. Aldering, P. Astier, , Spectra and light curves of six type Ia supernovae at 0:511<z<1 : 12 and the Union2 compilation, Astrophys. J. 716, 712 (2010)
https://doi.org/10.1088/0004-637X/716/1/712
40 S. Jha, A. G. Riess, and R. P. Kirshner, Improved distances to type Ia supernovae with multicolor light curve shapes: MLCS2k2, Astrophys. J. 659(1), 122 (2007)
https://doi.org/10.1086/512054
41 J. Guy, P. Astier, S. Baumont, D. Hardin, R. Pain, , SALT2: Using distant supernovae to improve the use of Type Ia supernovae as distance indicators, Astron. Astrophys. 466(1), 11 (2007)
https://doi.org/10.1051/0004-6361:20066930
42 N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, , The Hubble space telescope cluster supernova survey: V. improving the dark energy constraints above z>1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)
https://doi.org/10.1088/0004-637X/746/1/85
43 B. A. Bassett and M. Kunz, Cosmic distance-duality as probe of exotic physics and acceleration, Phys. Rev. D 69(10), 101305 (2004)
https://doi.org/10.1103/PhysRevD.69.101305
44 B. A. Bassett and M. Kunz, Cosmic acceleration vs. axion-photon mixing, Astrophys. J. 607(2), 661 (2004)
https://doi.org/10.1086/383520
45 M. Kunz and B. A. Bassett, A Tale of Two Distances, arXiv: astro-ph/0406013
46 R. Nair, S. Jhingan, and D. Jain, Cosmic distance duality and cosmic transparency, J. Cosmol. Astropart. Phys. 1212, 028 (2012)
47 H. Lampeitl, R. C. Nichol, H. J. Seo, T. Giannantonio, C. Shapiro, , First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets, Mon. Not. R. Astron. Soc. 401(4), 2331 (2009)
https://doi.org/10.1111/j.1365-2966.2009.15851.x
48 Z. Li, P. Wu, and H. Yu, Cosmological-modelindependent tests for the distance-duality relation from Galaxy Clusters and Type Ia Supernova, Astrophys. J. 729(1), L14 (2011)
https://doi.org/10.1088/2041-8205/729/1/L14
49 R. F. L. Holanda, J. A. S. Lima, and M. B. Ribeiro, Testing the distance-duality relation with galaxy clusters and type Ia supernovae, Astrophys. J. 722(2), L233 (2010)
https://doi.org/10.1088/2041-8205/722/2/L233
50 P. Wu, Z. Li, X. Liu, and H. Yu, Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation, Phys. Rev. D 92(2), 023520 (2015)
https://doi.org/10.1103/PhysRevD.92.023520
51 P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, 3rd Ed., edited by P. R. Bevington and K. D. Robinson, MA: McGraw-Hill, 2003
52 E. D. Reese, J. E. Carlstrom, M. Joy, J. J. Mohr, L. Grego, and W. L. Holzapfel, Determining the cosmic distance scale from interferometric measurements of the Sunyaev-Zel’dovich effect, Astrophys. J. 581(1), 53 (2002)
https://doi.org/10.1086/344137
53 B. S. Mason, S. T. Myers, and A. C. S. Readhead, A Measurement of H0 from the Sunyaev-Zel’dovich Effect, Astrophys. J. 555, L11 (2001)
https://doi.org/10.1086/321737
54 B. A. Bassett and R. Hlozek, Baryon acoustic oscillations, arXiv: 0910.5224
55 C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, , The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1, Mon. Not. R. Astron. Soc. 425(1), 405 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21473.x
56 X. Xu, A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, and C. K. McBride, Measuring DA and H at z= 0 : 35 from the SDSS DR7 LRGs using baryon acoustic oscillations, Mon. Not. R. Astron. Soc. 431(3), 2834 (2013)
https://doi.org/10.1093/mnras/stt379
57 L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, , The clustering of galaxies in the SDSSIII Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering, Mon. Not. R. Astron. Soc. 439(4), 3504 (2014)
https://doi.org/10.1093/mnras/stu197
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed