Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (1): 124201   https://doi.org/10.1007/s11467-016-0601-6
  本期目录
Fundamental modes in waveguide pipe twisted by saturated double-well potential
Gui-Hua Chen1,Hong-Cheng Wang1,*(),Zhao-Pin Chen2,Yan Liu3,*()
1. Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
2. Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv IL-69978, Israel
3. Department of Applied Physics, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(5437 KB)  
Abstract

We study fundamental modes trapped in a rotating ring with a saturated nonlinear double-well potential. This model, which is based on the nonlinear Schrödinger equation, can be constructed in a twisted waveguide pipe in terms of light propagation, or in a Bose–Einstein condensate (BEC) loaded into a toroidal trap under a combination of a rotating-out-of-phase linear potential and nonlinear pseudopotential induced by means of a rotating optical field and the Feshbach resonance. Three types of fundamental modes are identified in this model, one symmetric and the other two asymmetric. The shape and stability of the modes and the transitions between different modes are investigated in the first rotational Brillouin zone. A similar model used a Kerr medium to build its nonlinear potential, but we replace it with a saturated nonlinear medium. The model exhibits not only symmetry breaking, but also symmetry recovery. A specific type of unstable asymmetric mode is also found, and the evolution of the unstable asymmetric mode features Josephson oscillation between two linear wells. By considering the model as a configuration of a BEC system, the ground state mode is identified among these three types, which characterize a specific distribution of the BEC atoms around the trap.

Key wordsTwisted double-well waveguide    saturated nonlinear potential    symmetry breaking    symmetry recovery
收稿日期: 2016-04-05      出版日期: 2016-08-16
Corresponding Author(s): Hong-Cheng Wang,Yan Liu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(1): 124201.
Gui-Hua Chen,Hong-Cheng Wang,Zhao-Pin Chen,Yan Liu. Fundamental modes in waveguide pipe twisted by saturated double-well potential. Front. Phys. , 2017, 12(1): 124201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0601-6
https://academic.hep.com.cn/fop/CN/Y2017/V12/I1/124201
1 Q. Gong and X. Hu, Ultrafast photonic crystal optical switching, Front. Phys. 1, 171 (2006)
https://doi.org/10.1007/s11467-006-0010-3
2 Y. Liu, F. Qin, F. Zhou, Q. Meng, D. Zhang, and Z. Li, Ultrafast optical switching in Kerr nonlinear photonic crystals, Front. Phys. 5, 244 (2010)
https://doi.org/10.1007/s11467-010-0100-0
3 M. Shen, B. Li, L. Ge, W. Chen, and D. Wu, Stability of vortex solitons under competing local and nonlocal cubic nonlinearities, Opt. Commun. 338, 27 (2015)
https://doi.org/10.1016/j.optcom.2014.10.017
4 Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, Modulation instability in metamaterials with saturable nonlinearity, J. Opt. Soc. Am. B 28(4), 908 (2011)
https://doi.org/10.1364/JOSAB.28.000908
5 T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, Travelling solitary waves in the discrete Schrodinger equation with saturable nonlinearity: Existence, stability and dynamics, Physica D 237(4), 551 (2008)
https://doi.org/10.1016/j.physd.2007.09.026
6 F. Setzpfandt, A. A. Sukhorukov, and T. Pertsch, Discrete quadratic solitons with competing secondharmonic components, Phys. Rev. A 84(5), 053843 (2011)
https://doi.org/10.1103/PhysRevA.84.053843
7 V. Lutsky and B. A. Malomed, One- and twodimensional solitons supported by singular modulation of quadratic nonlinearity, Phys. Rev. A 91(2), 023815 (2015)
https://doi.org/10.1103/PhysRevA.91.023815
8 M. Shen, Y. Y. Lin, C. C. Jeng, and R. K. Lee, Vortex pairs in nonlocal nonlinear media, J. Opt. 14(6), 065204 (2012)
https://doi.org/10.1088/2040-8978/14/6/065204
9 M. Shen, J. S. Gao, and L. J. Ge, Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media, Sci. Rep. 5, 9814 (2015)
https://doi.org/10.1038/srep09814
10 Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)
https://doi.org/10.1103/RevModPhys.83.247
11 Y. S. Kivshar, Nonlinear Tamm states and surface effects in periodic photonic structures, Laser Phys. Lett. 5(10), 703 (2008)
https://doi.org/10.1002/lapl.200810062
12 Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, Soliton topology versus discrete symmetry in optical lattices, Phys. Rev. Lett. 95(12), 123902 (2005)
https://doi.org/10.1103/PhysRevLett.95.123902
13 Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, Defect-mediated discrete solitons in optically induced photorefractive lattices, Phys. Rev. A 80(4), 043824 (2009)
https://doi.org/10.1103/PhysRevA.80.043824
14 W. M. Liu, B. Wu, and Q. Niu, Nonlinear effects in interference of Bose–Einstein condensates, Phys. Rev. Lett. 84(11), 2294 (2000)
https://doi.org/10.1103/PhysRevLett.84.2294
15 Z. X. Liang, Z. D. Zhang, and W. M. Liu, Dynamics of a bright soliton in Bose–Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential, Phys. Rev. Lett. 94(5), 050402 (2005)
https://doi.org/10.1103/PhysRevLett.94.050402
16 A. C. Ji, W. M. Liu, J. L. Song, and F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices, Phys. Rev. Lett. 101(1), 010402 (2008)
https://doi.org/10.1103/PhysRevLett.101.010402
17 E. A. Ostrovskaya and Y. S. Kivshar, Matter-wave gap solitons in atomic band-gap structures, Phys. Rev. Lett. 90(16), 160407 (2003)
https://doi.org/10.1103/PhysRevLett.90.160407
18 N. K. Efremidis and D. N. Christodoulides, Lattice solitons in Bose–Einstein condensates, Phys. Rev. A 67(6), 063608 (2003)
https://doi.org/10.1103/PhysRevA.67.063608
19 H. Sakaguchi and B. A. Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E 72(4), 046610 (2005)
https://doi.org/10.1103/PhysRevE.72.046610
20 B. B. Baizakov, B. A. Malomed, and M. Salerno, Matterwave solitons in radially periodic potentials, Phys. Rev. E 74(6), 066615 (2006)
https://doi.org/10.1103/PhysRevE.74.066615
21 O. Morsch and M. Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)
https://doi.org/10.1103/RevModPhys.78.179
22 H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)
https://doi.org/10.1103/PhysRevA.81.013624
23 Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Double symmetry breaking of solitons in one-dimensional virtual photonic crystals, Phys. Rev. A 83(5), 053832 (2011)
https://doi.org/10.1103/PhysRevA.83.053832
24 Y. Li, B. A. Malomed, J. Wu, W. Pang, S. Wang, and J. Zhou, Quasicompactons in inverted nonlinear photonic crystals, Phys. Rev. A 84(4), 043839 (2011)
https://doi.org/10.1103/PhysRevA.84.043839
25 Y. Li, W. Pang, S. Fu, and B. A. Malomed, Twocomponent solitons with a spatially modulated linear coupling: Inverted photonic crystals and fused couplers, Phys. Rev. A 85(5), 053821 (2012)
https://doi.org/10.1103/PhysRevA.85.053821
26 G. Chen, S. Zhang, and M. Wu, Optical solitons in a trinal-chennel inverted nonlinear photonic crystal, J. Nonlinear Opt. Phys. Mater. 22(01), 1350012 (2013)
https://doi.org/10.1142/S0218863513500124
27 W. Pang, H. Guo, G. Chen, and Z. Mai, Symmetry breaking bifurcation of two-component soliton modes in an inverted nonlinear random lattice, J. Phys. Soc. Jpn. 83(3), 034402 (2014)
https://doi.org/10.7566/JPSJ.83.034402
28 J. Deng, J. Liu, S. Tan, Z. Huang, and Y. Li, Propagation dynamic of a Gaussian in the inverted nonlinear photonic crystals, Optik (Stuttg.) 125(15), 4088 (2014)
https://doi.org/10.1016/j.ijleo.2014.01.107
29 H. Guo, Z. Chen, J. Liu, and Y. Li, Fundamental modes in a waveguide pipe twisted by inverted nonlinear doublewell potential, Laser Phys. 24(4), 045403 (2014)
https://doi.org/10.1088/1054-660X/24/4/045403
30 A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica, Opt. Express 14(13), 6055 (2006)
https://doi.org/10.1364/OE.14.006055
31 D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, Nonlinear refractive index of fs-laser-written waveguides in fused silica, Opt. Express 14(6), 2151 (2006)
https://doi.org/10.1364/OE.14.002151
32 Y. Li, B. A. Malomed, M. Feng, and J. Zhou, Arrayed and checkerboard optical waveguides controlled by the electromagnetically induced transparency, Phys. Rev. A 82(6), 063813 (2010)
https://doi.org/10.1103/PhysRevA.82.063813
33 J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of quasi-discrete solitons in resonant waveguide arrays activated by the electromagnetically induced transparency, J. Nonlinear Opt. Phys. Mater. 20(02), 193 (2011)
https://doi.org/10.1142/S0218863511006029
34 W. Pang, J. Wu, Z. Yuan, Y. Liu, and G. Chen, Lattice solitons in optical lattice controlled by electromagnetically induced transparency, J. Phys. Soc. Jpn. 80(11), 113401 (2011)
https://doi.org/10.1143/JPSJ.80.113401
35 H. Saito and M. Ueda, Emergence of Bloch bands in a rotating Bose–Einstein condensate, Phys. Rev. Lett. 93(22), 220402 (2004)
https://doi.org/10.1103/PhysRevLett.93.220402
36 S. Schwartz, M. Cozzini, C. Menotti, I. Carusotto, P. Bouyer, and S. Stringari, One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide, New J. Phys. 8(8), 162 (2006)
https://doi.org/10.1088/1367-2630/8/8/162
37 L. Wen, H. Xiong, and B. Wu, Hidden vortices in a Bose–Einstein condensate in a rotating double-well potential, Phys. Rev. A 82(5), 053627 (2010)
https://doi.org/10.1103/PhysRevA.82.053627
38 Y. Li, W. Pang, and B. A. Malomed, Nonlinear modes and symmetry breaking in rotating double-well potentials, Phys. Rev. A 86(2), 023832 (2012)
https://doi.org/10.1103/PhysRevA.86.023832
39 G. Chen, Z. Luo, J. Wu, and M. Wu, Switch between the types of the symmetry breaking bifurcation in optically induced photorefractive rotational double-well potential, J. Phys. Soc. Jpn. 82(3), 034401 (2013)
https://doi.org/10.7566/JPSJ.82.034401
40 Z. Luo, Y. Li, W. Pang, Y. Liu, and X. Wang, Double symmetry breaking of modes in dual-core rotating system, J. Phys. Soc. Jpn. 82(12), 124401 (2013)
https://doi.org/10.7566/JPSJ.82.124401
41 W. Pang, S. Fu, J. Wu, Y. Li, and Z. Mai, Nonlinear mode in rotating double-well potential with parity-time symmetry, Chin. Phys. B 23(10), 104214 (2014)
https://doi.org/10.1088/1674-1056/23/10/104214
42 J. Li, B. Liang, Y. Liu, P. Zhang, J. Zhou, S. O. Klimonsky, A. S. Slesarev, Y. D. Tretyakov, L. O’Faolain, and T. F. Krauss, Photonic crystal formed by the imaginary part of the refractive index, Adv. Mater. 22(24), 2676 (2010)
https://doi.org/10.1002/adma.200903938
43 M. Feng, Y. Liu, Y. Li, X. Xie, and J. Zhou, Light propagation in a resonantly absorbing waveguide array, Opt. Express 19(8), 7222 (2011)
https://doi.org/10.1364/OE.19.007222
44 B. Liang, Y. Liu, J. Li, L. Song, Y. Li, J. Zhou, and K. S. Wong, Frabication of large-size photonic crystals by holographic lithography using a lens array, J. Micromech. Microeng. 22(3), 035013 (2012)
https://doi.org/10.1088/0960-1317/22/3/035013
45 Y. K. Liu, S. C. Wang, Y. Y. Li, L. Y. Song, X. S. Xie, M. N. Feng, Z. M. Xiao, S. Z. Deng, J. Y. Zhou, J. T. Li, K. Sing Wong, and T. F. Krauss, Effcient color routing with a dispersion-controlled waveguide array, Light Sci. Appl. 2(2), e52 (2013)
https://doi.org/10.1038/lsa.2013.8
46 L. M. Chiofalo, S. Succi, and P. M. Tosi, Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginarytime algorithm, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5), 7438 (2000)
https://doi.org/10.1103/PhysRevE.62.7438
47 J. Yang and T. I. Lakoba, Accelerated imaginarytime evolution methods for the computation of solitary waves, Stud. Appl. Math. 120(3), 265 (2008)
https://doi.org/10.1111/j.1467-9590.2008.00398.x
48 L. Albuch and B. A. Malomed, Transitions between symmetric and asymmetric solitons in dual-core systems with cubicquintic nonlinearity, Math. Comput. Simul. 74(4-5), 312 (2007)
https://doi.org/10.1016/j.matcom.2006.10.028
49 G. Mazzarella and L. Salasnich, Spontaneous symmetry breaking and collapse in bosonic Josephson junctions, Phys. Rev. A 82(3), 033611 (2010)
https://doi.org/10.1103/PhysRevA.82.033611
50 L. K. Lim, T. Troppenz, and C. M. Smith, Internal Josephson oscillations for distinct momenta Bose– Einstein condensates, Phys. Rev. A 84(5), 053609 (2011)
https://doi.org/10.1103/PhysRevA.84.053609
51 J. Gillet, M. A. Garcia-March, T. Busch, and F. Sols, Tunneling, self-trapping, and manipulation of higher modes of a Bose–Einstein condensate in a double well, Phys. Rev. A 89, 023614 (2014)
https://doi.org/10.1103/PhysRevA.89.023614
52 G. Szirmai, G. Mazzarella, and L. Salasnich, Tunneling dynamics of bosonic Josephson junctions assisted by a cavity field, Phys. Rev. A 91(2), 023601 (2015)
https://doi.org/10.1103/PhysRevA.91.023601
53 J. Javanainen and R. Rajapakse, Bayesian inference to characterize Josephson oscillations in a double-well trap, Phys. Rev. A 92, 023613 (2015)
https://doi.org/10.1103/PhysRevA.92.023613
54 P. Pedri and L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 95(20), 200404 (2005)
https://doi.org/10.1103/PhysRevLett.95.200404
55 R. Nath, P. Pedri, and L. Santos, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Phys. Rev. Lett. 101(21), 210402 (2008)
https://doi.org/10.1103/PhysRevLett.101.210402
56 I. Tikhonenkov, B. A. Malomed, and A. Vardi, Vortex solitons in dipolar Bose–Einstein condensates, Phys. Rev. A 78(4), 043614 (2008)
https://doi.org/10.1103/PhysRevA.78.043614
57 Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matterwave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)
https://doi.org/10.1103/PhysRevA.88.053630
58 I. Tikhonenkov, B. A. Malomed, and A. Vardi, Anisotropic solitons in dipolar Bose–Einstein condensates, Phys. Rev. Lett. 100(9), 090406 (2008)
https://doi.org/10.1103/PhysRevLett.100.090406
59 S. K. Adhikari, Self-trapping of a dipolar Bose–Einstein condensate in a double well, Phys. Rev. A 89(4), 043609 (2014)
https://doi.org/10.1103/PhysRevA.89.043609
60 X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose– Einstein condensates with spin-orbit coupling, Phys. Rev. A 93(2), 023633 (2016)
https://doi.org/10.1103/PhysRevA.93.023633
61 J. M. Junquera-Hernández, J. Sánchez-Marín, and D. Maynau, Molecular electric quadrupole moments calculated with matrix dressed SDCI, Chem. Phys. Lett. 359(3-4), 343 (2002)
https://doi.org/10.1016/S0009-2614(02)00722-4
62 Y. Li, J. Liu, W. Pang, and B. A. Malomed, Lattice solitons with quadrupolar intersite interactions, Phys. Rev. A 88(6), 063635 (2013)
https://doi.org/10.1103/PhysRevA.88.063635
63 J. Huang, X. Jiang, H. Chen, Z. Fan, W. Pang, and Y. Li, Quadrupolar matter-wave soliton in two-dimensional free space, Front. Phys. 10(4), 100507 (2015)
https://doi.org/10.1007/s11467-015-0501-1
64 D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature 424(6950), 817 (2003)
https://doi.org/10.1038/nature01936
65 F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys. Rep. 463(1-3), 1 (2008)
https://doi.org/10.1016/j.physrep.2008.04.004
66 S. Flach and A. V. Gorbach, Discrete breathers Advances in theory and applications, Phys. Rep. 467(1-3), 1 (2008)
https://doi.org/10.1016/j.physrep.2008.05.002
67 X. Zhang, J. Chai, J. Huang, Z. Chen, Y. Li, and B. A. Malomed, Discrete solitons and scattering of lattice wave in guiding arrays with a nonlinear PT-symmetric defect, Opt. Express 22(11), 13927 (2014)
https://doi.org/10.1364/OE.22.013927
68 Z. Chen, J. Liu, S. Fu, Y. Li, and B. A. Malomed, Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers, Opt. Express 22(24), 29679 (2014)
https://doi.org/10.1364/OE.22.029679
69 G. Chen, H. Huang, and M. Wu, Solitary vortices in two dimensional waveguide matrix, J. Nonlinear Opt. Phys. Mater. 24(01), 1550012 (2015)
https://doi.org/10.1142/S0218863515500125
70 Z. Mai, S. Fu, J. Wu, and Y. Li, Discrete soliton in waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 83(3), 034404 (2014)
https://doi.org/10.7566/JPSJ.83.034404
71 Z. Mai, W. Pang, J. Wu, and Y. Li, Symmetry breaking of discrete solitons in two-component waveguide arrays with long-range linearly coupled effect, J. Phys. Soc. Jpn. 84(1), 014401 (2015)
https://doi.org/10.7566/JPSJ.84.014401
72 J. Huang, H. Li, X. Zhang, and Y. Li, Transmission, reflection, scattering, and trapping of traveling discrete solitons by C and V point defects, Front. Phys. 10(2), 104201 (2015)
https://doi.org/10.1007/s11467-014-0452-y
73 Z. Chen, J. Huang, J. Chai, X. Zhang, Y. Li, and B. A. Malomed, Discrete solitons in self-defocusing systems with PT-symmetric defects, Phys. Rev. A 91(5), 053821 (2015)
https://doi.org/10.1103/PhysRevA.91.053821
74 U. Al Khawaja, and A. A. Sukhorukov, Unidirectional ow of discrete solitons in waveguide arrays, Opt. Lett. 40(12), 2719 (2015)
https://doi.org/10.1364/OL.40.002719
75 Z. Peng, H. Li, Z. Fan, X. Zhang, and Y. Li, All optical diode realized by one dimensional waveguide array, J. Nonlinear Opt. Phys. Mater. 24(02), 1550022 (2015)
https://doi.org/10.1142/S0218863515500228
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed