Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114213   https://doi.org/10.1007/s11467-016-0607-0
  本期目录
Laser-induced breakdown spectroscopy in Asia
Zhen-Zhen Wang (王珍珍)1,Yoshihiro Deguchi (出口祥啓)2(),Zhen-Zhen Zhang (张臻臻)1,Zhe Wang (王哲)3,Xiao-Yan Zeng (曾晓雁)4,Jun-Jie Yan (严俊杰)1
1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. Graduate School of Advanced Technology and Science, Tokushima University, Tokushima 770-8501, Japan
3. State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua-BP Clean Energy Center, Tsinghua University, Beijing 100084, China
4. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(5652 KB)  
Abstract

Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

Key wordslaser-induced breakdown spectroscopy (LIBS)    quantitative analysis    signal enhancement    applications    challenges
收稿日期: 2016-04-01      出版日期: 2016-11-02
Corresponding Author(s): Yoshihiro Deguchi (出口祥啓)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114213.
Zhen-Zhen Wang (王珍珍),Yoshihiro Deguchi (出口祥啓),Zhen-Zhen Zhang (张臻臻),Zhe Wang (王哲),Xiao-Yan Zeng (曾晓雁),Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia. Front. Phys. , 2016, 11(6): 114213.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0607-0
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114213
1 A. W. Miziolek, V. Palleschi, and I. Schechter, Laser- Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006
https://doi.org/10.1017/CBO9780511541261
2 F. Brech and L. Cross, Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16, 59 (1962)
3 T. H. Maiman, Stimulated optical radiation in ruby, Nature 187(4736), 493 (1960)
https://doi.org/10.1038/187493a0
4 D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Laser-Induced Breakdown Spectroscopy, Elemental Analysis, in Encyclopedia of Analytical Chemistry, John Wiley & Sons, 2006
5 Y. Deguchi, Industrial Applications of Laser Diagnostics, Taylor & Francis Group, CRC Press, 2011
https://doi.org/10.1201/b11497
6 G. Galbács, A critical review of recent progress in analytical laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 407(25), 7537 (2015)
https://doi.org/10.1007/s00216-015-8855-3
7 D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: stillchallenging issues within the analytical plasma community, Appl. Spectrosc. 64(12), 335A (2010)
https://doi.org/10.1366/000370210793561691
8 D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
https://doi.org/10.1366/11-06574
9 L. J. Radziemski and D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, 2006
10 R. Noll, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, Springer, 2012
https://doi.org/10.1007/978-3-642-20668-9
11 Z. Wang, F. Z. Dong, and W. D. Zhou, A rising force for the world-wide development of laser-induced breakdown spectroscopy, Plasma Sci. Technol. 17(8), 617 (2015)
https://doi.org/10.1088/1009-0630/17/8/01
12 F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
https://doi.org/10.1007/s11467-012-0263-y
13 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
14 J. Yu and R. Zheng, Laser-induced plasma and laserinduced breakdown spectroscopy(LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 2 (2012)
https://doi.org/10.1007/s11467-012-0275-7
15 L. Zhang, S. Kashiwakura, and K. Wagatsuma, Emission characteristics of copper ionic lines from the 3d95s- 3d94p transition in a low-pressure laser-induced plasma, Key Eng. Mater. 508, 331 (2012)
https://doi.org/10.4028/www.scientific.net/KEM.508.331
16 X. H. Wang, S. D. Zhang, X. L. Cheng, E. Y. Zhu, W. Hang, and B. L. Huang, Ion kinetic energy distributions in laser-induced plasma, Spectrochim. Acta B 99, 101 (2014)
https://doi.org/10.1016/j.sab.2014.06.018
17 S. D. Zhang, X. H. Wang, M. H. He, Y. B. Jiang, B. C. Zhang, W. Hang, and B. L. Huang, Laser-induced plasma temperature, Spectrochim. Acta B 97, 13 (2014)
https://doi.org/10.1016/j.sab.2014.04.009
18 S. D. Zhang, B. C. Zhang, W. Hang, and B. L. Huang, Chemometrics and theoretical approaches for evaluation of matrix effect in laser ablation and ionization of metal samples, Spectrochim. Acta B 107, 17 (2015)
https://doi.org/10.1016/j.sab.2015.02.009
19 S. Hafeez, N. M. Shaikh, and M. A. Baig, Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd: YAG laser, Laser Part. Beams 26(01), 41 (2008)
https://doi.org/10.1017/S0263034608000062
20 N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd: YAG laser, Eur. Phys. J. D 44(2), 371 (2007)
https://doi.org/10.1140/epjd/e2007-00188-3
21 N. M. Shaikh, S. Hafeez, B. Rashid, S. Mahmood, and M. A. Baig, Optical emission studies of the mercury plasma generated by the fundamental, second and third harmonics of a Nd:YAG laser, J. Phys. D 39(20), 4377 (2006)
https://doi.org/10.1088/0022-3727/39/20/013
22 N. M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil, and M. A. Baig, Measurement of electron density and temperature of a laser-induced zinc plasma, J. Phys. D 39(7), 1384 (2006)
https://doi.org/10.1088/0022-3727/39/7/008
23 X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, Comparison of nanosecond laser produced brass plasmas under low and moderate pressure air, J. Phys. D 46(47), 475207 (2013)
https://doi.org/10.1088/0022-3727/46/47/475207
24 X. W. Li, W. F. Wei, J. Wu, S. L. Jia, and A. C. Qiu, The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere, J. Appl. Phys. 113(24), 243304 (2013)
https://doi.org/10.1063/1.4812580
25 W. F. Wei, J. Wu, X. W. Li, S. L. Jia, and A. C. Qiu, Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy, J. Appl. Phys. 114(11), 113304 (2013)
https://doi.org/10.1063/1.4821838
26 J. Wu, X. W. Li, W. F. Wei, S. L. Jia, and A. C. Qiu, Understanding plume splitting of laser ablated plasma: A view from ion distribution dynamics, Phys. Plasmas 20(11), 113512 (2013)
https://doi.org/10.1063/1.4835255
27 J. Wu, W. F. Wei, X. W. Li, S. L. Jia, and A. C. Qiu, Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion, Appl. Phys. Lett. 102(16), 164104 (2013)
https://doi.org/10.1063/1.4803044
28 Y. Iida, Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochim. Acta B 45(12), 1353 (1990)
https://doi.org/10.1016/0584-8547(90)80188-O
29 Y. Iida, Laser vaporization of solid samples into a hollow-cathode discharge for atomic emission spectrometry, Spectrochim. Acta B At. 45(4–5), 427 (1990)
30 N. Farid, S. Bashir, and K. Mahmood, Effect of ambient gas conditions on laser-induced copper plasma and surface morphology, Phys. Scr. 85(1), 015702 (2012)
https://doi.org/10.1088/0031-8949/85/01/015702
31 H. M. Hou, Y. Li, Y. Tian, Z. H. Yu, and R. Zheng, Plasma condensation effect induced by ambient pressure in laser-induced breakdown spectroscopy, Appl. Phys. Express 7(3), 032402 (2014)
https://doi.org/10.7567/APEX.7.032402
32 H. M. Hou, Y. Tian, Y. Li, and R. Zheng, Study of pressure effects on laser induced plasma in bulk seawater, J. Anal. At. Spectrom. 29(1), 169 (2014)
https://doi.org/10.1039/C3JA50244A
33 Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd: YAG laser ablation, Appl. Spectrosc. 51(7), 959 (1997)
https://doi.org/10.1366/0003702971941610
34 S. H. Tavassoli, I. V. Cravetchi, and R. Fedosejevs, Spatial and temporal evolution of laser-generated microplasmas, IEEE Trans. Plasma Sci. 34(6), 2594 (2006)
https://doi.org/10.1109/TPS.2006.885100
35 F. Rezaei and S. H. Tavassoli, Numerical and experimental investigation of laser induced plasma spectrum of aluminum in the presence of a noble gas,Spectrochim. Acta B 78, 29 (2012)
https://doi.org/10.1016/j.sab.2012.09.006
36 F. Rezaei and S. H. Tavassoli, Quantitative analysis of aluminum samples in He ambient gas at different pressures in a thick LIBS plasma, Appl. Phys. B 120(3), 563 (2015)
https://doi.org/10.1007/s00340-015-6166-1
37 S. Sunku, E. N. Rao, M. K. Gundawar, S. P. Tewari, and S. V. Rao, Molecular formation dynamics of 5-nitro-2,4- dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro- 1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy, Spectrochim. Acta B 87, 121 (2013)
https://doi.org/10.1016/j.sab.2013.05.006
38 S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,Spectrochim. Acta B79–80, 31 (2013)
https://doi.org/10.1016/j.sab.2012.11.002
39 M. Ramli, N. Idris, K. Fukumoto, H. Niki, F. Sakan, T. Maruyama, K. H. Kurniawan, T. J. Lie, and K. Kagawa, Hydrogen analysis in solid samples by utilizing He metastable atoms induced by TEA CO2 laser plasma in He gas at 1 atm, Spectrochim. Acta B 62(12), 1379 (2007)
https://doi.org/10.1016/j.sab.2007.10.007
40 M. Ramli, N. Idris, H. Niki, K. H. Kurniawan, and K. Kagawa, New method of laser plasma spectroscopy for metal samples using metastable He atoms induced by transversely excited atmospheric-pressure CO2 laser in He gas at 1 atm, Jpn. J. Appl. Phys. 47(3), 1595 (2008)
https://doi.org/10.1143/JJAP.47.1595
41 Z. S. Lie, A. Khumaeni, K. Kurihara, K. H. Kurniawan, Y. I. Lee, K. I. Fukumoto, K. Kagawa, and H. Niki, Excitation mechanism of H, He, C, and F atoms in metal-assisted atmospheric helium gas plasma induced by transversely excited atmospheric-pressure CO2 laser bombardment, Jpn. J. Appl. Phys. 50, 122701 (2011)
42 N. Idris, K. Lahna, S. N. Abdulmadjid, M. Ramli, H. Suyanto, A. M. Marpaung, M. Pardede, E. Jobiliong, R. Hedwig, M. M. Suliyanti, Z. S. Lie, T. J. Lie, K. Kagawa, M. O. Tjia, and K. H. Kurniawan, Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement, J. Appl. Phys. 117(22), 223301 (2015)
https://doi.org/10.1063/1.4922456
43 Z. Z. Wang, Y. Deguchi, J. J. Yan, and J. P. Liu, Comparison of the detection characteristics of trace species using laser-induced breakdown spectroscopy and laser breakdown time-of-flight mass spectrometry, Sensors 15(3), 5982 (2015)
https://doi.org/10.3390/s150305982
44 Z. Z. Wang, Y. Deguchi, M. Kuwahara, J. J. Yan, and J. P. Liu, Enhancement of laser-induced breakdown spectroscopy (LIBS) detection limit using a low-pressure and short-pulse laser-induced plasma process, Appl. Spectrosc. 67(11), 1242 (2013)
https://doi.org/10.1366/13-07131
45 X. B. Zhang, Y. Deguchi, Z. Z. Wang, J. J. Yan, and J. P. Liu, Sensitive detection of iodine by low pressure and short pulse laser-induced breakdown spectroscopy (LIBS), J. Anal. At. Spectrom. 29(6), 1082 (2014)
https://doi.org/10.1039/c4ja00044g
46 X. B. Zhang, Y. Deguchi, and J. P. Liu, Numerical simulation of laser induced weakly ionized helium plasma process by lattice Boltzmann method, Jpn. J. Appl. Phys. 51(1S), 01AA04 (2012)
https://doi.org/10.7567/JJAP.51.01AA04
47 Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, L. Zhao, C. Yang, Y. Y. Chen, Y. H. Zhang, and P. C. Han, Study on parameters influencing analytical performance of laser-induced breakdown spectroscopy, Front. Phys. 7(6), 714 (2012)
https://doi.org/10.1007/s11467-012-0267-7
48 S. N. Abdulmadjid, M. M. Suliyanti, K. H. Kurniawan, T. J. Lie, M. Pardede, R. Hedwig, K. Kagawa, and M. O. Tjia, An improved approach for hydrogen analysis in metal samples using single laser-induced gas plasma and target plasma at helium atmospheric pressure, Appl. Phys. B 82(1), 161 (2006)
https://doi.org/10.1007/s00340-005-1973-4
49 R. Hedwig, Z. S. Lie, K. H. Kurniawan, A. N. Chumakov, K. Kagawa, and M. O. Tjia, Toward quantitative deuterium analysis with laser-induced breakdown spectroscopy using atmospheric-pressure helium gas, J. Appl. Phys. 107(2), 023301 (2010)
https://doi.org/10.1063/1.3282801
50 K. H. Kurniawan, T. J. Lie, M. M. Suliyanti, R. Hedwig, M. Pardede, M. Ramli, H. Niki, S. N. Abdulmadjid, N. Idris, K. Lahna, Y. Kusumoto, K. Kagawa, and M. O. Tjia, The role of He in enhancing the intensity and lifetime of H and D emissions from laser-induced atmospheric-pressure plasma, J. Appl. Phys. 105(10), 103303 (2009)
https://doi.org/10.1063/1.3129317
51 A. M. Marpaung, Z. S. Lie, H. Niki, K. Kagawa, K. I. Fukumoto, M. Ramli, S. N. Abdulmadjid, N. Idris, R. Hedwig, M. O. Tjia, M. Pardede, M. M. Suliyanti, E. Jobiliong, and K. H. Kurniawan, Deuterium analysis in zircaloy using ps laser-induced low pressure plasma, J. Appl. Phys. 110(6), 063301 (2011)
https://doi.org/10.1063/1.3631776
52 M. Pardede, T. J. Lie, K. H. Kurniawan, H. Niki, K. Fukumoto, T. Maruyama, K. Kagawa, and M. O. Tjia, Crater effects on H and D emission from laser induced low-pressure helium plasma, J. Appl. Phys. 106(6), 063303 (2009)
https://doi.org/10.1063/1.3224864
53 M. Ramli, K. I. Fukumoto, H. Niki, S. N. Abdulmadjid, N. Idris, T. Maruyama, K. Kagawa, M. O. Tjia, M. Pardede, K. H. Kurniawan, R. Hedwig, Z. S. Lie, T. J. Lie, and D. P. Kurniawan, Quantitative hydrogen analysis of zircaloy-4 in laser-induced breakdown spectroscopy with ambient helium gas, Appl. Opt. 46(34), 8298 (2007)
https://doi.org/10.1364/AO.46.008298
54 R. Ahmed and M. A. Baig, A comparative study of single and double pulse laser induced breakdown spectroscopy, J. Appl. Phys. 106(3), 033307 (2009)
https://doi.org/10.1063/1.3190516
55 Z. S. Lie, M. O. Tjia, R. Hedwig, M. M. Suliyanti, S. N. Abdulmadjid, N. Idris, A. M. Marpaung, M. Pardede, E. Jobiliong, M. Ramli, H. Suyanto, K. Fukumoto, K. Kagawa, and K. H. Kurniawan, Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma, J. Appl. Phys. 113(5), 053301 (2013)
https://doi.org/10.1063/1.4789817
56 L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy, Appl. Phys. Lett. 98(13), 131501 (2011)
https://doi.org/10.1063/1.3573807
57 L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
https://doi.org/10.1364/OE.20.001436
58 L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, and Y. F. Lu, Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement, Opt. Express 19(15), 14067 (2011)
https://doi.org/10.1364/OE.19.014067
59 L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
https://doi.org/10.1364/OE.21.018188
60 M. Oba, Y. Maruyama, K. Akaoka, M. Miyabe, and I. Wakaida, Double-pulse LIBS of gadolinium oxide ablated by femto- and nano-second laser pulses, Appl. Phys, A 101(3), 545 (2010)
https://doi.org/10.1007/s00339-010-5894-7
61 D. X. Sun, M. G. Su, and C. Z. Dong, Emission signal enhancement and plasma diagnostics using collinear double pulse for laser-induced breakdown spectroscopy of aluminum alloys, Eur. Phys. J. Appl. Phys. 61(3), 30802 (2013)
https://doi.org/10.1051/epjap/2013120470
62 S. Y. Chan and N. H. Cheung, Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy, Anal. Chem. 72(9), 2087 (2000)
https://doi.org/10.1021/ac991242o
63 S. L. Liu and N. H. Cheung, Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms, Appl. Phys. Lett. 81(27), 5114 (2002)
https://doi.org/10.1063/1.1532774
64 S. L. Lui and N. H. Cheung, Resonance-enhanced laserinduced plasma spectroscopy: Ambient gas effects, Spectrochim. Acta B 58(9), 1613 (2003)
https://doi.org/10.1016/S0584-8547(03)00139-3
65 W. L. Yip and N. H. Cheung, Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance, Spectrochim. Acta B 64(4), 315 (2009)
https://doi.org/10.1016/j.sab.2009.03.020
66 X. F. Li, W. D. Zhou, and Z. F. Cui, Temperature and electron density of soil plasma generated by LA-FPDPS, Front. Phys. 7(6), 721 (2012)
https://doi.org/10.1007/s11467-012-0254-z
67 W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
https://doi.org/10.1364/OE.18.002573
68 W. D. Zhou, X. J. Su, H. G. Qian, K. X. Li, X. F. Li, Y. L. Yu, and Z. J. Ren, Discharge character and optical emission in a laser ablation nanosecond discharge enhanced silicon plasma, J. Anal. At. Spectrom. 28(5), 702 (2013)
https://doi.org/10.1039/c3ja30355a
69 A. Khumaeni, T. Motonobu, A. Katsuaki, M. Masabumi, and W. Ikuo, Enhancement of LIBS emission using antenna-coupled microwave, Opt. Express 21(24), 29755 (2013)
https://doi.org/10.1364/OE.21.029755
70 L. X. Sun and H. B. Yu, Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy, Spectrochim. Acta B 64(3), 278 (2009)
https://doi.org/10.1016/j.sab.2009.02.010
71 B. Zhang, L. X. Sun, H. B. Yu, Y. Xin, and Z. B. Cong, Wavelet denoising method for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(12), 1884 (2013)
https://doi.org/10.1039/c3ja50239b
72 B. Zhang, H. B. Yu, L. X. Sun, Y. Xin, and Z. B. Cong, A method for resolving overlapped peaks in laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 67(9), 1087 (2013)
https://doi.org/10.1366/12-06822
73 J. Feng, Z. Wang, Z. Li, and W. D. Ni, Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters, Spectrochim. Acta B 65(7), 549 (2010)
https://doi.org/10.1016/j.sab.2010.05.004
74 L. Z. Li, Z. Wang, T. B. Yuan, Z. Y. Hou, Z. Li, and W. D. Ni, A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2274 (2011)
https://doi.org/10.1039/c1ja10194c
75 Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
https://doi.org/10.1016/j.sab.2012.01.005
76 X. W. Li, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 88, 180 (2013)
https://doi.org/10.1016/j.sab.2013.07.005
77 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A nonlinearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
https://doi.org/10.1039/c1ja10113g
78 Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
https://doi.org/10.1039/c1ja10041f
79 Z. Wang, J. Feng, and Z. Li, Reply to “Comment on ‘A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements”’ by Vincenzo Palleschi, J. Anal. At. Spectrom 26, 2302 (2011)
https://doi.org/10.1039/c1ja10220f
80 Z. Y. Hou, Z. Wang, S. L. Lui, T. B. Yuan, L. Z. Li, Z. Li, and W. D. Ni, Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm, J. Anal. At. Spectrom. 28(1), 107 (2013)
https://doi.org/10.1039/C2JA30104K
81 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, and W. D. Ni, A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
https://doi.org/10.1016/j.sab.2014.06.017
82 J. Feng, Z. Wang, L. Z. Li, Z. Li, and W. D. Ni, A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
https://doi.org/10.1366/11-06393
83 J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
https://doi.org/10.1007/s00216-011-4865-y
84 Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, Major elements analysis in bituminous coals under different ambient gases by laserinduced breakdown spectroscopy with PLS modeling, Front. Phys. 7(6), 708 (2012)
https://doi.org/10.1007/s11467-012-0262-z
85 T. B. Yuan, Z. Wang, Z. Li, W. D. Ni, and J. M. Liu, A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laserinduced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
https://doi.org/10.1016/j.aca.2013.11.027
86 T. B. Yuan, Z. Wang, S. L. Lui, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Coal property analysis using laserinduced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
https://doi.org/10.1039/c3ja50097g
87 X. W. Li, Z. Wang, Y. T. Fu, Z. Li, J. M. Liu, and W. D. Ni, Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(9), 955 (2014)
https://doi.org/10.1366/13-07345
88 A. Sarkar, V. Karki, S. K. Aggarwal, G. S. Maurya, R. Kumar, A. K. Rai, X. Mao, and R. E. Russo, Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy, Spectrochim. Acta B 108, 8 (2015)
https://doi.org/10.1016/j.sab.2015.04.002
89 Y. Tian, Z. N. Wang, X. S. Han, H. M. Hou, and R. Zheng, Comparative investigation of partial least squares discriminant analysis and support vector machines for geological cuttings identification using laserinduced breakdown spectroscopy, Spectrochim. Acta B 102, 52 (2014)
https://doi.org/10.1016/j.sab.2014.10.014
90 J. H. Yang, C. C. Yi, J. W. Xu, and X. H. Ma, Laserinduced breakdown spectroscopy quantitative analysis method via adaptive analytical line selection and relevance vector machine regression model, Spectrochim. Acta B 107, 45 (2015)
https://doi.org/10.1016/j.sab.2015.02.014
91 L. X. Sun and H. B. Yu, Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta 79(2), 388 (2009)
https://doi.org/10.1016/j.talanta.2009.03.066
92 T. Takahashi, B. Thornton, K. Ohki, and T. Sakka, Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation, Spectrochim. Acta B 111, 8 (2015)
https://doi.org/10.1016/j.sab.2015.06.009
93 M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, Application of LIBS for direct determination of volatile matter content in coal, J. Anal. At. Spectrom. 26(11), 2183 (2011)
https://doi.org/10.1039/c1ja10109a
94 S. C. Yao, J. D. Lu, M. R. Dong, K. Chen, J. Y. Li, and J. Li, Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis, Appl. Spectrosc. 65(10), 1197 (2011)
https://doi.org/10.1366/10-06190
95 S. C. Yao, J. D. Lu, J. Li, K. Chen, J. Y. Li, and M. R. Dong, Multi-elemental analysis of fertilizer using laserinduced breakdown spectroscopy coupled with partial least squares regression, J. Anal. At. Spectrom. 25(11), 1733 (2010)
https://doi.org/10.1039/c0ja00027b
96 S. C. Yao, J. D. Lu, J. P. Zheng, and M. R. Dong, Analyzing unburned carbon in fly ash using laser-induced breakdown spectroscopy with multivariate calibration method, J. Anal. At. Spectrom. 27(3), 473 (2012)
https://doi.org/10.1039/c2ja10229c
97 J. S. Huang and K. C. Lin, Laser-induced breakdown spectroscopy of liquid droplets: Correlation analysis with plasma-induced current versus continuum background, J. Anal. At. Spectrom. 20(1), 53 (2005)
https://doi.org/10.1039/b411719k
98 T. B. Yuan, Z. Wang, L. Z. Li, Z. Y. Hou, Z. Li, and W. D. Ni, Quantitative carbon measurement in anthracite using laser-induced breakdown spectroscopy with binder, Appl. Opt. 51(7), B22 (2012)
https://doi.org/10.1364/AO.51.000B22
99 J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Effects of experimental parameters on elemental analysis of coal by laserinduced breakdown spectroscopy, Opt. Laser Technol. 41(8), 907 (2009)
https://doi.org/10.1016/j.optlastec.2009.03.003
100 L. Zhang, Z. Y. Hu, W. B. Yin, D. Huang, W. G. Ma, L. Dong, H. P. Wu, Z. X. Li, L. T. Xiao, and S. T. Jia, Recent progress on laser-induced breakdown spectroscopy for the monitoring of coal quality and unburned carbon in fly ash, Front. Phys. 7(6), 690 (2012)
https://doi.org/10.1007/s11467-012-0259-7
101 Z. Z. Wang, Y. Deguchi, H. Watanabe, R. Kurose, J. J. Yan, and J. P. Liu, Improvement on quantitative measurement of fly ash contents using laser-induced breakdown spectroscopy, J. Flow Control Meas. Visualization 3(1), 10 (2015)
102 Z. Z. Wang, Y. Deguchi, M. Kuwahara, T. Taira, X. B. Zhang, J. J. Yan, J. P. Liu, H. Watanabe, and R. Kurose, Quantitative elemental detection of size-segregated particles using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 130 (2013)
https://doi.org/10.1016/j.sab.2013.05.034
103 Z. Z. Wang, Y. Deguchi, M. Kuwahara, X. B. Zhang, J. J. Yan, and J. P. Liu, Sensitive measurement of trace mercury using low pressure laser-induced plasma, Jpn. J. Appl. Phys. 52(11S), 11NC05 (2013)
https://doi.org/10.7567/JJAP.52.11NC05
104 R. Yoshiie, Y. Yamamoto, S. Uemiya, S. Kambara, and H. Moritomi, Simple and rapid analysis of heavy metals in sub-micron particulates in flue gas, Powder Technol. 180(1–2), 135 (2008)
https://doi.org/10.1016/j.powtec.2007.03.020
105 A. Khumaeni, K. Kurihara, Z. S. Lie, K. Kagawa, and Y. I. Lee, Analysis of sodium aerosol using transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy, Curr. Appl. Phys. 14(3), 451 (2014)
https://doi.org/10.1016/j.cap.2013.12.017
106 H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution, Opt. Express 22(20), 24478 (2014)
https://doi.org/10.1364/OE.22.024478
107 S. Eto, J. Tani, K. Shirai, and T. Fujii, Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy, Spectrochim. Acta B 87, 74 (2013)
https://doi.org/10.1016/j.sab.2013.05.005
108 R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: Experimental Advanced Superconducting Tokamak, Spectrochim. Acta B 87, 147 (2013)
https://doi.org/10.1016/j.sab.2013.05.010
109 R. Hai, C. Li, H. B. Wang, H. B. Ding, H. S. Zhuo, J. Wu, and G. N. Luo, Characterization of Li deposition on the first wall of EAST using laser-induced breakdown spectroscopy, J. Nucl. Mater. 438, S1168 (2013)
https://doi.org/10.1016/j.jnucmat.2013.01.258
110 R. Hai, X. W. Wu, Y. Xin, P. Liu, D. Wu, H. B. Ding, Y. Zhou, L. Z. Cai, and L. W. Yan, Use of dual-pulse laserinduced breakdown spectroscopy for characterization of the laser cleaning of a first mirror exposed in HL-2A, J. Nucl. Mater. 447(1–3), 9 (2014)
https://doi.org/10.1016/j.jnucmat.2013.12.019
111 Q. Xiao, A. Huber, G. Sergienko, B. Schweer, P. Mertens, A. Kubina, V. Philipps, and H. Ding, Application of laser-induced breakdown spectroscopy for characterization of material deposits and tritium retention in fusion devices, Fusion Eng. Des. 88(9-10), 1813 (2013)
https://doi.org/10.1016/j.fusengdes.2013.05.083
112 S. J. Qiao, Y. Ding, D. Tian, L. Yao, and G. Yang, A review of laser-induced breakdown spectroscopy for analysis of geological materials, Appl. Spectrosc. Rev. 50(1), 1 (2015)
https://doi.org/10.1080/05704928.2014.911746
113 T. Hussain, and M. A. Gondal, Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis, J. Phys. Conf. Ser. 439, 012050 (2013)
https://doi.org/10.1088/1742-6596/439/1/012050
114 L. W. Sheng, T. L. Zhang, G. H. Niu, K. Wang, H. S. Tang, Y. X. Duan, and H. Li, Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)
https://doi.org/10.1039/C4JA00352G
115 T. Kim, C. T. Lin, and Y. Yoon, Compositional mapping by laser-induced breakdown spectroscopy, J. Phys. Chem. B 102(22), 4284 (1998)
https://doi.org/10.1021/jp980245m
116 C. M. Li, Z. M. Zou, X. Y. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Quantitative analysis of phosphorus in steel using laser-induced breakdown spectroscopy in air atmosphere, J. Anal. At. Spectrom. 29(8), 1432 (2014)
https://doi.org/10.1039/C4JA00036F
117 S. Kashiwakura and K. Wagatsuma, Rapid sorting of stainless steels by open-air laser-induced breakdown spectroscopy with detecting chromium, nickel, and molybdenum, ISIJ Int. 55(11), 2391 (2015)
https://doi.org/10.2355/isijinternational.ISIJINT-2015-316
118 S. Kashiwakura, and K. Wagatsuma, Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres, Anal. Sci. 29(12), 1159 (2013)
https://doi.org/10.2116/analsci.29.1159
119 Z. B. Ni, X. L. Chen, H. B. Fu, J. G. Wang, and F. Z. Dong, Study on quantitative analysis of slag based on spectral normalization of laser-induced plasma image, Front. Phys. 9(4), 439 (2014)
https://doi.org/10.1007/s11467-014-0433-1
120 T. L. Zhang, S. Wu, J. Dong, J. Wei, K. Wang, H. S. Tang, X. F. Yang, and H. Li, Quantitative and classification analysis of slag samples by laser induced breakdown spectroscopy (LIBS) coupled with support vector machine (SVM) and partial least square (PLS) methods, J. Anal. At. Spectrom. 30(2), 368 (2015)
https://doi.org/10.1039/C4JA00421C
121 S. C. Yao, M. R. Dong, J. D. Lu, J. Li, and X. Dong, Correlation between grade of pearlite spheroidization and laser induced spectra, Laser Phys. 23(12), 125702 (2013)
https://doi.org/10.1088/1054-660X/23/12/125702
122 S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases, Appl. Surf. Sci. 257(7), 3103 (2011)
https://doi.org/10.1016/j.apsusc.2010.10.124
123 J. Li, J. D. Lu, Y. Dai, M. R. Dong, W. L. Zhong, and S. C. Yao, Correlation between aging grade of T91 steel and spectral characteristics of the laser-induced plasma, Appl. Surf. Sci. 346, 302 (2015)
https://doi.org/10.1016/j.apsusc.2015.03.186
124 K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge, Spectrochim. Acta B 65(5), 420 (2010)
https://doi.org/10.1016/j.sab.2010.04.006
125 X. F. Li, W. D. Zhou, K. X. Li, H. G. Qian, and Z. J. Ren, Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil, Opt. Commun. 285(1), 54 (2012)
https://doi.org/10.1016/j.optcom.2011.08.074
126 K. X. Li, W. D. Zhou, Q. M. Shen, Z. J. Ren, and B. J. Peng, Laser ablation assisted spark induced breakdown spectroscopy on soil samples, J. Anal. At. Spectrom. 25(9), 1475 (2010)
https://doi.org/10.1039/b922187e
127 W. A. Farooq, W. Tawfik, F. N. Al-Mutairi, and Z. A. Alahmed, Qualitative analysis and plasma characteristics of soil from a desert area using LIBS technique, J. Opt. Soc. Korea 17(6), 548 (2013)
https://doi.org/10.3807/JOSK.2013.17.6.548
128 G. C. He, D. X. Sun, M. G. Su, and C. Z. Dong, A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique, Eur. Phys. J. Appl. Phys. 55(3), 30701 (2011)
https://doi.org/10.1051/epjap/2011110128
129 T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses, Opt. Lett. 31(23), 3456 (2006)
https://doi.org/10.1364/OL.31.003456
130 M. M. Suliyanti, M. Pardede, T. J. Lie, K. H. Kurniawan, A. Khumaeni, K. Kagawa, M. O. Tjia, and Y. I. Lee, Direct powder analysis by laser-induced breakdown spectroscopy utilizing laser-controlled dust production in a small chamber, J. Korean Phys. Soc. 58(5), 1129 (2011)
https://doi.org/10.3938/jkps.58.1129
131 L. Huang, M. Y. Yao, Y. Xu, and M. H. Liu, Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models, Appl. Phys. B 111(1), 45 (2013)
https://doi.org/10.1007/s00340-012-5305-1
132 M. Y. Yao, J. L. Lin, M. H. Liu, and Y. Xu, Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy, Appl. Opt. 51(10), 1552 (2012)
https://doi.org/10.1364/AO.51.001552
133 H. Oguchi, T. Sakka, and Y. H. Ogata, Effects of pulse duration upon the plume formation by the laser ablation of Cu in water, J. Appl. Phys. 102(2), 023306 (2007)
https://doi.org/10.1063/1.2759182
134 T. Sakka, S. Masai, K. Fukami, and Y. H. Ogata, Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid, Spectrochim. Acta B 64(10), 981 (2009)
https://doi.org/10.1016/j.sab.2009.07.018
135 T. Sakka, A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, and B. Thornton, Effects of pulse width on nascent laser-induced bubbles for underwater laserinduced breakdown spectroscopy, Spectrochim. Acta B 97, 94 (2014)
https://doi.org/10.1016/j.sab.2014.05.009
136 A. Matsumoto, A. Tamura, K. Fukami, Y. H. Ogata, and T. Sakka, Two-dimensional space-resolved emission spectroscopy of laser ablation plasma in water, J. Appl. Phys. 113(5), 053302 (2013)
https://doi.org/10.1063/1.4789968
137 A. Tamura, T. Sakka, K. Fukami, and Y. H. Ogata, Dynamics of cavitation bubbles generated by multi-pulse laser irradiation of a solid target in water, Appl. Phys. A 112(1), 209 (2013)
https://doi.org/10.1007/s00339-012-7291-x
138 K. H. Kurniawan, M. Pardede, R. Hedwig, S. N. Abdulmadjid, K. Lahna, N. Idris, E. Jobiliong, H. Suyanto, M. M. Suliyanti, M. O. Tjia, T. J. Lie, Z. S. Lie, D. P. Kurniawan, and K. Kagawa, Practical and highly sensitive elemental analysis for aqueous samples containing metal impurities employing electrodeposition on indium-tin oxide film samples and laser-induced shock wave plasma in low-pressure helium gas, Appl. Opt. 54(25), 7592 (2015)
https://doi.org/10.1364/AO.54.007592
139 Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, Ultrasensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface, J. Anal. At. Spectrom. 23(6), 871 (2008)
https://doi.org/10.1039/b801946k
140 Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates, Spectrochim. Acta B 63(1), 64 (2008)
https://doi.org/10.1016/j.sab.2007.11.010
141 D. H. Zhu, J. P. Chen, J. Lu, and X. W. Ni, Laserinduced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent,Anal. Methods 4(3), 819 (2012)
https://doi.org/10.1039/c2ay05675e
142 Q. Y. Lin, Z. M. Wei, M. J. Xu, S. Wang, G. H. Niu, K. P. Liu, Y. X. Duan, and J. Yang, Laser-induced breakdown spectroscopy for solution sample analysis using porous electrospun ultrafine fibers as a solid-phase support, RSC Advances 4(28), 14392 (2014)
https://doi.org/10.1039/c3ra47697a
143 L. J. Zheng, S. Niu, A. Q. Khan, S. Yuan, J. Yu, and H. P. Zeng, Comparative study of the matrix effect in Cl analysis with laser-induced breakdown spectroscopy in a pellet or in a dried solution layer on a metallic target, Spectrochim. Acta B 118, 66 (2016)
https://doi.org/10.1016/j.sab.2016.02.007
144 J. S. Xiu, S. L. Zhong, H. M. Hou, Y. Lu, and R. Zheng, Quantitative determination of manganese in aqueous solutions and seawater by laser-induced breakdown spectroscopy (LIBS) using paper substrates, Appl. Spectrosc. 68(9), 1039 (2014)
https://doi.org/10.1366/13-07448
145 S. L. Zhong, R. Zheng, Y. Lu, K. Cheng, and J. S. Xiu, Ultrasonic nebulizer assisted LIBS: A promising metal elements detection method for aqueous sample analysis, Plasma Sci. Technol. 17(11), 979 (2015)
https://doi.org/10.1088/1009-0630/17/11/17
146 Z. Z. Wang, J. J. Yan, J. P. Liu, Y. Deguchi, S. Katsumori, and A. Ikutomo, Sensitive cesium measurement in liquid sample using low-pressure laser-induced breakdown spectroscopy, Spectrochim. Acta B 114, 74 (2015)
https://doi.org/10.1016/j.sab.2015.10.006
147 X. Y. Pu and N. H. Cheung, ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: Plume reheating with a second Nd:YAG laser pulse, Appl. Spectrosc. 57(5), 588 (2003)
https://doi.org/10.1366/000370203321666641
148 X. Y. Pu, W. Y. Ma, and N. H. Cheung, Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy, Appl. Phys. Lett. 83(16), 3416 (2003)
https://doi.org/10.1063/1.1616647
149 T. Takahashi, B. Thornton, and T. Ura, Investigation of influence of hydrostatic pressure on double-pulse laserinduced breakdown spectroscopy for detection of Cu and Zn in submerged solids, Appl. Phys. Express 6(4), 042403 (2013)
https://doi.org/10.7567/APEX.6.042403
150 B. Thornton, T. Sakka, T. Masamura, A. Tamura, T. Takahashi, and A. Matsumoto, Long-duration nanosecond single pulse lasers for observation of spectra from bulk liquids at high hydrostatic pressures, Spectrochim. Acta B 97, 7 (2014)
https://doi.org/10.1016/j.sab.2014.04.008
151 B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, and A. Matsumoto, Spectroscopic measurements of solids immersed in water at high pressure using a long-duration nanosecond laser pulse, Appl. Phys. Express 6(8), 082401 (2013)
https://doi.org/10.7567/APEX.6.082401
152 B. Thornton, T. Takahashi, T. Ura, and T. Sakka, Cavity formation and material ablation for single-pulse laser-ablated solids immersed in water at high pressure, Appl. Phys. Express 5(10), 102402 (2012)
https://doi.org/10.1143/APEX.5.102402
153 Y. L. Yu, W. D. Zhou, and X. J. Su, Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy, Opt. Commun. 333, 62 (2014)
https://doi.org/10.1016/j.optcom.2014.07.053
154 M. Bahreini, Z. Hosseinimakarem, and S. H. Tavassoli, A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy, J. Appl. Phys. 112(5), 054701 (2012)
https://doi.org/10.1063/1.4747934
155 Z. Hosseinimakarem and S. H. Tavassoli, Analysis of human nails by laser-induced breakdown spectroscopy, J. Biomed. Opt. 16(5), 057002 (2011)
https://doi.org/10.1117/1.3574757
156 M. Bahreini, B. Ashrafkhani, and S. H. Tavassoli, Discrimination of patients with diabetes mellitus and healthy subjects based on laser-induced breakdown spectroscopy of their fingernails, J. Biomed. Opt. 18(10), 107006 (2013)
https://doi.org/10.1117/1.JBO.18.10.107006
157 M. Gazmeh, M. Bahreini, and S. H. Tavassoli, Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt. 54(1), 123 (2015)
https://doi.org/10.1364/AO.54.000123
158 W. A. Farooq, W. Tawfik, S. B. Qasim, A. S. Aldwayyan, M. Atif, K. Ahmad, and M. S. Al-Salhi, Qualitative analysis of dental nano-composite restorative material using laser induced breakdown spectroscopy and EDS analysis, 2014 11th Annual High-capacity Optical Networks and Emerging/Enabling Technologies (HONET), 202
159 S. G. Kim and S. H. Jeong, Effects of temperaturedependent optical properties on the fluence rate and temperature of biological tissue during low-level laser therapy, Lasers Med. Sci. 29(2), 637 (2014)
https://doi.org/10.1007/s10103-013-1376-4
160 J. T. Han, D. X. Sun, M. G. Su, L. L. Peng, and C. Z. Dong, Quantitative analysis of metallic elements in tobacco and tobacco ash by calibration free laser-induced breakdown spectroscopy, Anal. Lett. 45(13), 1936 (2012)
https://doi.org/10.1080/00032719.2012.677979
161 M. Y. Yao, L. Huang, J. H. Zheng, S. Q. Fan, and M. H. Liu, Assessment of feasibility in determining of Cr in Gannan Navel Orange treated in controlled conditions by laser induced breakdown spectroscopy, Opt. Laser Technol. 52, 70 (2013)
https://doi.org/10.1016/j.optlastec.2013.04.005
162 Y. H. Lee, K. S. Ham, S. H. Han, J. H. Yoo, and S. H. Jeong, Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra, Spectrochim. Acta B 101, 57 (2014)
https://doi.org/10.1016/j.sab.2014.07.012
163 M. M. Tan, S. Cui, J. H. Yoo, S. H. Han, K. S. Ham, S. H. Nam, and Y. H. Lee, Feasibility of laser-induced breakdown spectroscopy (LIBS) for classification of sea salts, Appl. Spectrosc. 66(3), 262 (2012)
https://doi.org/10.1366/11-06379
164 Z. S. Lie, M. Pardede, M. O. Tjia, K. H. Kurniawan, and K. Kagawa, Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars, J. Appl. Phys. 118(8), 083304 (2015)
https://doi.org/10.1063/1.4929570
165 S. Eto, T. Matsuo, T. Matsumura, T. Fujii, and M. Y. Tanaka, Quantitative estimation of carbonation and chloride penetration in reinforced concrete by laserinduced breakdown spectroscopy, Spectrochim. Acta B 101, 245 (2014)
https://doi.org/10.1016/j.sab.2014.09.004
166 L. L. Peng, D. X. Sun, M. G. Su, J. T. Han, and C. Z. Dong, Rapid analysis on the heavy metal content of spent zinc–manganese batteries by laser-induced breakdown spectroscopy, Opt. Laser Technol. 44(8), 2469 (2012)
https://doi.org/10.1016/j.optlastec.2012.01.036
167 T. Nishi, T. Sakka, H. Oguchi, K. Fukami, and Y. H. Ogata, In situ electrode surface analysis by laserinduced breakdown spectroscopy, J. Electrochem. Soc. 155(11), F237 (2008)
https://doi.org/10.1149/1.2976893
168 W. Tawfik, W. A. Farooq, and Z. A. Alahmed, Damage profile of HDPE polymer using laser-induced plasma, J. Opt. Soc. Korea 18(1), 50 (2014)
https://doi.org/10.3807/JOSK.2014.18.1.050
169 Q. Q. Wang, K. Liu, H. Zhao, C. H. Ge, and Z. W. Huang, Detection of explosives with laser-induced breakdown spectroscopy, Front. Phys. 7(6), 701 (2012)
https://doi.org/10.1007/s11467-012-0272-x
170 S. Tachibana, K. Kanai, S. Yoshida, K. Suzuki, and T. Sato, Combined effect of spatial and temporal variations of equivalence ratio on combustion instability in a low-swirl combustor, Proc. Combust. Inst. 35(3), 3299 (2015)
https://doi.org/10.1016/j.proci.2014.07.024
171 L. Zimmer and S. Tachibana, Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment, Proc. Combust. Inst. 31(1), 737 (2007)
https://doi.org/10.1016/j.proci.2006.07.035
172 Y. Y. Zhang, G. Xiong, S. Q. Li, Z. Z. Dong, S. G. Buckley, and S. D. Tse, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust. Flame 160(3), 725 (2013)
https://doi.org/10.1016/j.combustflame.2012.11.007
173 H. Nozari, F. Rezaei, and S. H. Tavassoli, Analysis of organic vapors with laser induced breakdown spectroscopy, Phys. Plasmas 22(9), 093302 (2015)
https://doi.org/10.1063/1.4931174
174 X. Wan and P. Wang, Remote quantitative analysis of minerals based on multispectral line-calibrated laserinduced breakdown spectroscopy (LIBS), Appl. Spectrosc. 68(10), 1132 (2014)
https://doi.org/10.1366/13-07203
175 Q. D. Zeng, L. B. Guo, X. Y. Li, C. He, M. Shen, K. H. Li, J. Duan, X. Y. Zeng, and Y. F. Lu, Laser-induced breakdown spectroscopy using laser pulses delivered by optical fibers for analyzing Mn and Ti elements in pig iron, J. Anal. At. Spectrom. 30(2), 403 (2015)
https://doi.org/10.1039/C4JA00462K
176 L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B 112, 40 (2015)
https://doi.org/10.1016/j.sab.2015.08.008
177 M. Kurihara, K. Ikeda, Y. Izawa, Y. Deguchi, and H. Tarui, Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy, Appl. Opt. 42(30), 6159 (2003)
https://doi.org/10.1364/AO.42.006159
178 M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy, Spectrochim. Acta B 57(4), 701 (2002)
https://doi.org/10.1016/S0584-8547(01)00403-7
179 W. B. Yin, L. Zhang, L. Dong, W. G. Ma, and S. T. Jia, Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants, Appl. Spectrosc. 63(8), 865 (2009)
https://doi.org/10.1366/000370209788964458
180 L. Zhang, L. Dong, H. P. Dou, W. B. Yin, and S. T. Jia, Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions, Appl. Spectrosc. 62(4), 458 (2008)
https://doi.org/10.1366/000370208784046786
181 L. Zhang, W. G. Ma, L. Dong, X. J. Yan, Z. Y. Hu, Z. X. Li, Y. Z. Zhang, L. Wang, W. B. Yin, and S. T. Jia, Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS), Appl. Spectrosc. 65(7), 790 (2011)
https://doi.org/10.1366/10-06213
182 M. Saeki, A. Iwanade, C. Ito, I. Wakaida, B. Thornton, T. Sakka, and H. Ohba, Development of a fibercoupled laser-induced breakdown spectroscopy instrument for analysis of underwater debris in a nuclear reactor core, J. Nucl. Sci. Technol. 51(7–8), 930 (2014)
https://doi.org/10.1080/00223131.2014.917996
183 C. Ito, H. Naito, A. Nishimura, H. Ohba, I. Wakaida, A. Sugiyama, and K. Chatani, Development of radiationresistant optical fiber for application to observation and laser spectroscopy under high radiation dose,J. Nucl. Sci. Technol. 51(7–8), 944 (2014)
https://doi.org/10.1080/00223131.2014.924883
184 Y. D. Gong, D. W. Choi, B. Y. Han, J. H. Yoo, S. H. Han, and Y. H. Lee, Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy, J. Nucl. Mater. 453(1–3), 8 (2014)
https://doi.org/10.1016/j.jnucmat.2014.06.022
185 B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, T. Nozaki, T. Ohki, and K. Ohki, Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis, Deep Sea Res. Part I Oceanogr. Res. Pap. 95, 20 (2015)
https://doi.org/10.1016/j.dsr.2014.10.006
186 Y. Lu, Y. D. Li, Y. Li, Y. F. Wang, S. Wang, Z. M. Bao, and R. Zheng, Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy, Spectrochim. Acta B 110, 63 (2015)
https://doi.org/10.1016/j.sab.2015.05.012
187 F. Matroodi and S. H. Tavassoli, Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup, Appl. Phys. B 117(4), 1081 (2014)
https://doi.org/10.1007/s00340-014-5929-4
188 Z. Y. Hou, Z. Wang, J. M. Liu, W. D. Ni, and Z. Li, Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy, Opt. Express 21(13), 15974 (2013)
https://doi.org/10.1364/OE.21.015974
189 Z. Wang, Z. Y. Hou, S. L. Lui, D. Jiang, J. M. Liu, and Z. Li, Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal, Opt. Express 20(S6), A1011 (2012)
https://doi.org/10.1364/OE.20.0A1011
190 B. Ashrafkhani, M. Bahreini, and S. H. Tavassoli, Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system, Opt. Spectrosc. 118(5), 841 (2015)
https://doi.org/10.1134/S0030400X15050057
191 Y. Ding, D. Tian, C. S. Li, Y. X. Duan, and G. Yang, Design and development of a miniature digital delay generator for laser-induced breakdown spectroscopy, Instrum. Sci. Technol. 43(1), 115 (2015)
https://doi.org/10.1080/10739149.2014.940534
192 S. Wang, M. J. Xu, Q. Y. Lin, G. M. Guo, Z. Zhang, D. Tian, and Y. X. Duan, A multifunctional sampling chamber for laser-induced breakdown spectroscopy for on-site elemental analysis, Instrum. Sci. Technol. 43(4), 485 (2015)
https://doi.org/10.1080/10739149.2015.1010091
193 Y. Cai and N. H. Cheung, Photoacoustic monitoring of the mass removed in pulsed laser ablation, Microchem. J. 97(2), 109 (2011)
https://doi.org/10.1016/j.microc.2010.08.001
194 N. H. Cheung and E. S. Yeung, Single-shot elemental analysis of liquids based on laser vaporization at fluences below breakdown, Appl. Spectrosc. 47(7), 882 (1993)
https://doi.org/10.1366/0003702934415192
195 W. F. Ho, C. W. Ng, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: Effects of laser wavelength, Appl. Spectrosc. 51(1), 87 (1997)
https://doi.org/10.1366/0003702971938812
196 K. M. Lo and N. H. Cheung, ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions, Appl. Spectrosc. 56(6), 682 (2002)
https://doi.org/10.1366/000370202760077612
197 C. W. Ng, W. F. Ho, and N. H. Cheung, Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties, Appl. Spectrosc. 51(7), 976 (1997)
https://doi.org/10.1366/0003702971941638
198 N. H. Cheung and E. S. Yeung, Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow, Anal. Chem. 66(7), 929 (1994)
https://doi.org/10.1021/ac00079a003
199 C. W. Ng and N. H. Cheung, Detection of sodium and potassium in single human red blood cells by 193-nm laser ablative sampling: A feasibility demonstration, Anal. Chem. 72(1), 247 (2000)
https://doi.org/10.1021/ac9908795
200 Y. S. Liu, Z. C. Hu, S. Gao, D. Günther, J. Xu, C. G. Gao, and H. H. Chen, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chem. Geol. 257(1–2), 34 (2008)
https://doi.org/10.1016/j.chemgeo.2008.08.004
201 X. P. Xia, M. Sun, G. C. Zhao, and Y. Luo, LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance, Precambrian Res. 144(3–4), 199 (2006)
https://doi.org/10.1016/j.precamres.2005.11.004
202 X. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. E. Russo, Laser ablation molecular isotopic spectrometry: Parameter influence on boron isotope measurements, Spectrochim. Acta B 66(8), 604 (2011)
https://doi.org/10.1016/j.sab.2011.06.007
203 R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, Laser ablation molecular isotopic spectrometry, Spectrochim. Acta B 66(2), 99 (2011)
https://doi.org/10.1016/j.sab.2011.01.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed