Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2016, Vol. 11 Issue (5): 115207-    DOI: 10.1007/s11467-016-0619-9
  本期目录 |  
In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system
Yong Xin (辛勇)1,2,Lan-Xiang Sun (孙兰香)1(),Zhi-Jia Yang (杨志家)1,Peng Zeng (曾鹏)1,Zhi-Bo Cong (丛智博)1,Li-Feng Qi (齐立峰)1
1. Key Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(4190 KB)  
Abstract

To monitor the components of molten magnesium alloy during the smelting process in real time and online, we designed a standoff double-pulse laser-induced breakdown spectroscopy (LIBS) analysis system that can perform focusing, collecting and imaging of long-range samples. First, we tested the system on solid standard magnesium alloy samples in the laboratory to establish a basis for the online monitoring of the components of molten magnesium alloy in the future. The experimental results show that the diameters of the focus spots are approximately 1 mm at a range of 3 m, the ablation depth of the double-pulse mode is much deeper than that of the single-pulse mode, the optimum interpulse delay of the double pulse is inconsistent at different ranges, and the spectral intensity decays rapidly as the range increases. In addition, the enhancement effect of the double pulse at 1.89 m is greater than that at 2.97 m, the maximum enhancement is 7.1-fold for the Y(I)550.35-nm line at 1.89 m, and the calibration results at 1.89 m are better than those at 2.97 m. At 1.89 m, the determination coefficients (R2) of the calibration curves are approximately 99% for Y, Pr, and Zr; the relative standard deviations (RSDs) are less than 10% for Y, Pr, and Zr; the root mean square errors (RMSEs) are less than 0.037% for Pr and Zr; the limits of detection (LODs) are less than 1000 ppm for Y, Pr, and Zr; and the LODs of Y, Pr, and Zr at 2.97 m are higher than those at 1.89 m. Additionally, we tested the system on molten magnesium alloy in a magnesium alloy plant. The calibration results of the liquid magnesium alloy are not as favorable as those of the sampling solid magnesium alloys. In particular, the RSDs of the liquid magnesium alloy are approximately 20% for Pr and La. However, with future improvements in the experimental conditions, the developed system is promising for the in situ analysis of molten magnesium alloy.

Key wordslaser-induced breakdown spectroscopy    standoff    double-pulse    online    magnesium alloy
收稿日期: 2016-05-20      出版日期: 2016-10-17
引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 115207-.
Yong Xin (辛勇),Lan-Xiang Sun (孙兰香),Zhi-Jia Yang (杨志家),Peng Zeng (曾鹏),Zhi-Bo Cong (丛智博),Li-Feng Qi (齐立峰). In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system. Front. Phys. , 2016, 11(5): 115207-.
链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0619-9      或      http://academic.hep.com.cn/fop/CN/Y2016/V11/I5/115207
1 W. J. Ding, Y. J. Wu, L. M. Peng, X. Q. Zeng, D. L. Lin, and B. Chen, Research and application development of advanced magnesium alloys, Materials China 29(8), 37 (2010)
2 A. W. Miziolek, V. Palleschi, and I. Schechter, Laserinduced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006
doi: 10.1017/CBO9780511541261
3 D. A. Cremers and L. J. Radziemski, Handbook of Laser-induced Breakdown Spectroscopy, New York: John Wiley & Sons, Ltd, 2006
doi: 10.1002/0470093013
4 R. Noll, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications, Berlin: Springer, 2011
5 D. W. Hahn and N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields, Appl. Spectrosc. 66(4), 347 (2012)
doi: 10.1366/11-06574
6 F. J. Fortes and J. J. Laserna, The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon, Spectrochim. Acta B At. Spectrosc. 65(12), 975 (2010)
doi: 10.1016/j.sab.2010.11.009
7 J. Kaiser, K. Novotný, M. Z. Martin, A. Hrdlicka, R. Malina, M. Hartl, V. Adam, and R. Kizek, Trace elemental analysis by laser-induced breakdown spectroscopy — Biological applications, Surf. Sci. Rep. 67(11-12), 233 (2012)
doi: 10.1016/j.surfrep.2012.09.001
8 J. El Haddad, L. Canioni, and B. Bousquet, Good practices in LIBS analysis: Review and advices, Spectrochim. Acta B At. Spectrosc. 101, 171 (2014)
doi: 10.1016/j.sab.2014.08.039
9 P. Pořízka, P. Prochazková, D. Prochazka, L. Sládková, J. Novotný, M. Petrilak, M. Brada, O. Samek, Z. Pilát, P. Zemánek, V. Adam, R. Kizek, K. Novotný, and J. Kaiser, Algal biomass analysis by laser-based analytical techniques—A review, Sensors (Basel Switzerland) 14(9), 17725 (2014)
doi: 10.3390/s140917725
10 A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, Assessment of LIBS for spectrochemical analysis: A review, Appl. Spectrosc. Rev. 47(1), 14 (2012)
doi: 10.1080/05704928.2011.622327
11 Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
doi: 10.1007/s11467-013-0410-0
12 J. Yu and R. E. Zeng, Laser-induced plasma and laserinduced breakdown spectroscopy (LIBS) in China: The challenge and the opportunity, Front. Phys. 7(6), 647 (2012)
doi: 10.1007/s11467-012-0275-7
13 J. Vrenegor, R. Noll, and V. Sturm, Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements, Spectrochim. Acta B At. Spectrosc. 60(7–8), 1083 (2005)
doi: 10.1016/j.sab.2005.05.027
14 M. A. Gondal and T. Hussain, Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy, Talanta 71(1), 73 (2007)
doi: 10.1016/j.talanta.2006.03.022
15 B. Hettinger, V. Hohreiter, M. Swingle, and D. W. Hahn, Laser-induced breakdown spectroscopy for ambient air particulate monitoring: correlation of total and speciated aerosol particle counts, Appl. Spectrosc. 60(3), 237 (2006)
doi: 10.1366/000370206776342544
16 F. Ferioli and S. G. Buckley, Measurements of hydrocarbons using laser-induced breakdown spectroscopy, Combust. Flame 144(3), 435 (2006)
doi: 10.1016/j.combustflame.2005.08.005
17 T. B. Yuan, Z. Wang, S. L. Lui, Y. Fu, Z. Li, J. Liu, and W. Ni, Coal property analysis using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 28(7), 1045 (2013)
doi: 10.1039/c3ja50097g
18 L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy, Opt. Express 21(15), 18188 (2013)
doi: 10.1364/OE.21.018188
19 L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation, Opt. Express 20(2), 1436 (2012)
doi: 10.1364/OE.20.001436
20 W. D. Zhou, K. X. Li, Q. M. Shen, Q. Chen, and J. Long, Optical emission enhancement using laser ablation combined with fast pulse discharge, Opt. Express 18(3), 2573 (2010)
doi: 10.1364/OE.18.002573
21 Y. Feng, J. J. Yang, J. M. Fan, G. X. Yao, X. H. Ji, X. Y. Zhang, X. F. Zheng, and Z. F. Cui, Investigation of laser-induced breakdown spectroscopy of a liquid jet, Appl. Opt. 49(13), C70 (2010)
doi: 10.1364/AO.49.000C70
22 C. Carlhoff and S. Kirchhoff, Laser-induced emission spectroscopy for on-line analysis of molten metal in a steel converter, Laser und Optoelektronik 23, 50 (1991)
23 R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry applications for production control and quality assurance in the steel industry, Spectrochim. Acta B At. Spectrosc. 56(6), 637 (2001)
doi: 10.1016/S0584-8547(01)00214-2
24 L. Peter, V. Sturm, and R. Noll, Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet, Appl. Opt. 42(30), 6199 (2003)
doi: 10.1364/AO.42.006199
25 R. D. Saro, A. Weisberg, and J. Craparo, in: Final Report Prepared for the U.S. Department of Energy Under Award Number DE-FC02-99CH10974, 2005
26 G. Hubmer, R. Kitzberger, and K. Morwald, Application of LIBS to the in-line process control of liquid highalloy steel under pressure, Anal. Bioanal. Chem. 385(2), 219 (2006)
doi: 10.1007/s00216-006-0321-9
27 S. Palanco, S. Conesa, and J. J. Laserna, Analytical control of liquid steel in an induction melting furnace using a remote laser induced plasma spectrometer, J. Anal. At. Spectrom. 19(4), 462 (2004)
doi: 10.1039/b400354c
28 T. Victor, Future of the online control of molten metal, Metall. Anal. 33(4), 13 (2013)
29 F. Z. Dong, X. L. Chen, Q. Wang, L. X. Sun, H. B. Yu, Y. X. Liang, J. G. Wang, Z. B. Ni, Z. H. Du, Y. W. Ma, and J. D. Lu, Recent progress on the application of LIBS for metallurgical online analysis in China, Front. Phys. 7(6), 679 (2012)
doi: 10.1007/s11467-012-0263-y
30 L. X. Sun, H. B. Yu, and Y. Xin, Z. B. Cong and H. Y. Kong, On-line monitoring of molten steel compositions by laser-induced breakdown spectroscopy, Chin. J. Lasers 38(9), 0915002 (2011)
doi: 10.3788/CJL201138.0915002
31 L. X. Sun, H. B. Yu, Z. B. Cong, Y. Xin, Y. Li, and L. F. Qi, In situ analysis of steel melt by double-pulse laserinduced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B At. Spectrosc. 112, 40 (2015)
doi: 10.1016/j.sab.2015.08.008
32 K. Chen, J. D. Lu, and J. Y. Li, Real-time quantitative analysis of multi-elements in liquid steel by LIBS, Guangpuxue Yu Guangpu Fenxi 31(3), 823 (2011)
33 P. Pořízka, I. Ročňáková, J. Klus, D. Prochazka, L. Sládková, P. Šperka, Z. Spotz, L. Čelko, K. Novotný, and J. Kaiser, Estimating the grade of Mg corrosion using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 30(10), 2099 (2015)
doi: 10.1039/C5JA00257E
34 F. Sorrentino, G. Carelli, F. Francesconi, M. Francesconi, P. Marsili, G. Cristoforetti, S. Legnaioli, V. Palleschi, and E. Tognoni, Fast analysis of complex metallic alloys by double-pulse time-integrated laserinduced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 64(10), 1068 (2009)
doi: 10.1016/j.sab.2009.07.037
35 D. Stratis, K. Eland, and M. Angel, Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission, Appl. Spectrosc. 54(9), 1270 (2000)
doi: 10.1366/0003702001951174
36 I. Gaona, P. Lucena, J. Moros, F. J. Fortes, S. Guirado, J. Serrano, and J. J. Laserna, Evaluating the use of standoff LIBS in architectural heritage: surveying the Cathedral of Málaga, J. Anal. At. Spectrom. 28(6), 810 (2013)
doi: 10.1039/c3ja50069a
37 R. C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W. C. Barkley, , The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests, Space Sci. Rev. 170, 167 (2012)
doi: 10.1007/s11214-012-9902-4
38 S. Palanco, C. Lo’pez-Moreno, and J. J. Laserna, Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing, Spectrochim. Acta B At. Spectrosc. 61(1), 88 (2006)
doi: 10.1016/j.sab.2005.12.004
39 B. Sallé, P. Mauchien, and S. Maurice, Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects, Spectrochim. Acta B At. Spectrosc. 62(8), 739 (2007)
doi: 10.1016/j.sab.2007.07.001
40 L. F. Qi, L. X. Sun, Y. Xin, Z. B. Cong, Y. Li, and H. B. Yu, Application of stand-off double-pulse laser-induced breakdown spectroscopy in elemental analysis of magnesium alloy, Plasma Sci. Technol. 17(8), 676 (2015)
doi: 10.1088/1009-0630/17/8/11
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed