Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2017, Vol. 12 Issue (3): 127203    DOI: 10.1007/s11467-016-0629-7
  本期目录 |  
Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2
Xing-Chen Pan1,Yiming Pan1,Juan Jiang2,Huakun Zuo3,Huimei Liu1,Xuliang Chen4,Zhongxia Wei1,Shuai Zhang1,Zhihe Wang1,Xiangang Wan1,Zhaorong Yang4,Donglai Feng2,Zhengcai Xia3,Liang Li3,Fengqi Song1(),Baigeng Wang1(),Yuheng Zhang4,Guanghou Wang1
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and College of Physics, Nanjing University, Nanjing 210093, China
2. State Key Laboratory of Surface Physics, Collaborative Innovation Center of Advanced Microstructures, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433, China
3. Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
4. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
 全文: PDF(3544 KB)  

Unsaturated magnetoresistance (MR) has been reported in type-II Weyl semimetal WTe2, manifested as a perfect compensation of opposite carriers. We report linear MR (LMR) in WTe2 crystals, the onset of which was identified by constructing the MR mobility spectra for weak fields. The LMR further increased and became dominant for fields stronger than 20 T, while the parabolic MR gradually decayed. The LMR was also observed in high-pressure conditions.

Key wordsWTe2    type-II Weyl semimetal    carrier balance    linear magnetoresistance
收稿日期: 2016-09-03      出版日期: 2017-01-03
. [J]. Frontiers of Physics, 2017, 12(3): 127203.
Xing-Chen Pan,Yiming Pan,Juan Jiang,Huakun Zuo,Huimei Liu,Xuliang Chen,Zhongxia Wei,Shuai Zhang,Zhihe Wang,Xiangang Wan,Zhaorong Yang,Donglai Feng,Zhengcai Xia,Liang Li,Fengqi Song,Baigeng Wang,Yuheng Zhang,Guanghou Wang. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2. Front. Phys. , 2017, 12(3): 127203.
1 A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature 527(7579), 495 (2015)
doi: 10.1038/nature15768
2 S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
doi: 10.1126/science.aaa9297
3 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
doi: 10.1103/PhysRevX.5.031013
4 I. Belopolski, S.-Y. Xu, Y. Ishida, X.C. Pan, P. Yu, D. S. Sanchez, M. Neupane, N. Alidoust, G. Chang, T.-R. Chang, Y. Wu, G. Bian, H. Zheng, S.-M. Huang, C.- C. Lee, D. Mou, L. Huang, Y. Song, B. G. Wang, G. H. Wang, Y.-W. Yeh, N. Yao, J. Rault, P. Lefevre, F. Bertran, H.-T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Q. Song, S. Shin, and M. Z. Hasan, Unoccupied electronic structure and signatures of topological Fermi arcs in the Weyl semimetal candidate MoxW1−xTe2, arXiv: 1512.09099 (2015)
5 I. Belopolski, S.Y. Xu, Y. Ishida, X. Pan, P. Yu, D. S. Sanchez, H. Zheng, M. Neupane, N. Alidoust, G. Chang, T.R. Chang, Y. Wu, G. Bian, S.M. Huang, C.C. Lee, D. Mou, L. Huang, Y. Song, B. Wang, G. Wang, Y.W. Yeh, N. Yao, J. E. Rault, P. Le Fèvre, F. Bertran, H.T. Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2, Phys. Rev. B 94(8), 085127 (2016)
doi: 10.1103/PhysRevB.94.085127
6 X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
doi: 10.1103/PhysRevB.83.205101
7 M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Large, nonsaturating magnetoresistance in WTe2, Nature 514, 205 (2014)
8 I. Pletikosi? M. N. Ali, A. Fedorov, R. Cava, and T. Valla, Electronic structure basis for the extraordinary magnetoresistance in WTe2, Phys. Rev. Lett. 113(21), 216601 (2014)
doi: 10.1103/PhysRevLett.113.216601
9 P. Cai, J. Hu, L. P. He, J. Pan, X. C. Hong, Z. Zhang, J. Zhang, J. Wei, Z. Q. Mao, and S. Y. Li, Drastic pressure effect on the extremely large magnetoresistance in WTe2: Quantum oscillation study, Phys. Rev. Lett. 115(5), 057202 (2015)
doi: 10.1103/PhysRevLett.115.057202
10 X. C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and Y. Zhang, Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride, Nat. Commun. 6, 7805 (2015)
doi: 10.1038/ncomms8805
11 D. Kang, Y. Zhou, W. Yi, C. Yang, J. Guo, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, and Z. Zhao, Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride, Nat. Commun. 6, 7804 (2015)
doi: 10.1038/ncomms8804
12 J. Ye, Y. Zhang, R. Akashi, M. Bahramy, R. Arita, and Y. Iwasa, Superconducting dome in a gate-tuned band insulator, Science 338(6111), 1193 (2012)
doi: 10.1126/science.1228006
13 J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2, Phys. Rev. Lett. 115(16), 166601 (2015)
doi: 10.1103/PhysRevLett.115.166601
14 J. Antoszewski and L. Faraone, Quantitative mobility spectrum analysis (QMSA) in multi-layer semiconductor structures, Opto-Electron. Rev. 12, 347 (2004)
15 J. Antoszewski, G. Umana-Membreno, and L. Faraone, High-resolution mobility spectrum analysis of multicarrier transport in advanced infrared materials, J. Electron. Mater. 41(10), 2816 (2012)
doi: 10.1007/s11664-012-1978-9
16 J. McClure, Analysis of multicarrier galvanomagnetic data for graphite, Phys. Rev. 112(3), 715 (1958)
doi: 10.1103/PhysRev.112.715
17 K. Huynh, Y. Tanabe, T. Urata, S. Heguri, K. Tanigaki, T. Kida, and M. Hagiwara, Mobility spectrum analytical approach for intrinsic band picture of Ba(FeAs)2, New J. Phys. 16(9), 093062 (2014)
doi: 10.1088/1367-2630/16/9/093062
18 K. Huynh, Y. Tanabe, T. Urata, H. Oguro, S. Heguri, K. Watanabe, and K. Tanigaki, Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers, Phys. Rev. B 90(14), 144516 (2014)
doi: 10.1103/PhysRevB.90.144516
19 Z. Zhu, X. Lin, J. Liu, B. Fauque, Q. Tao, C. Yang, Y. Shi, and K. Behnia, Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2, Phys. Rev. Lett. 114(17), 176601 (2015)
doi: 10.1103/PhysRevLett.114.176601
20 At higher temperature, the mobility is strongly suppressed by electron-phonon interaction. The parameters obtained from the mobility spectra at higher temperatures are not exact.
21 H. Lv, W. Lu, D. Shao, Y. Liu, S. Tan, and Y. Sun, Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: From bulk to monolayer, Europhys. Lett. 110(3), 37004 (2015)
doi: 10.1209/0295-5075/110/37004
22 T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2014)
doi: 10.1038/nmat4143
23 A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)
doi: 10.1103/PhysRevLett.114.117201
24 M. Novak, S. Sasaki, K. Segawa, and Y. Ando, Large linear magnetoresistance in the Dirac semimetal TlBiSSe, Phys. Rev. B 91(4), 041203 (2015)
doi: 10.1103/PhysRevB.91.041203
25 J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R. Cava, and N. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL 114(2), 27002 (2016)
doi: 10.1209/0295-5075/114/27002
26 C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: An exotic compensated semimetal, arXiv: 1502.00251 (2015)
27 C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11(8), 645 (2015)
doi: 10.1038/nphys3372
28 K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)
doi: 10.1103/PhysRevLett.106.217004
29 D. X. Qu, Y. Hor, J. Xiong, R. Cava, and N. Ong, Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3, Science 329(5993), 821 (2010)
doi: 10.1126/science.1189792
30 R. Xu, A. Husmann, T. Rosenbaum, M. L. Saboungi, J. Enderby, and P. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides, Nature 390, 57 (1997)
doi: 10.1038/36306
31 J. C. W. Song, G. Refael, and P. A. Lee, Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential, Phys. Rev. B 92(18), 180204 (2015)
doi: 10.1103/PhysRevB.92.180204
Full text