Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 120701   https://doi.org/10.1007/s11467-016-0645-7
  本期目录
Constructing backbone network by using tinker algorithm
Zhiwei He1(),Meng Zhan2,Jianxiong Wang3,Chenggui Yao1
1. Department of Mathematics, Shaoxing University, Shaoxing 312000, China
2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3. College of Science, Hubei University of Technology, Wuhan 430068, China
 全文: PDF(797 KB)  
Abstract

Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

Key wordsbiological network    backbone network    tinker algorithm    mathematical model
收稿日期: 2016-10-08      出版日期: 2016-12-30
Corresponding Author(s): Zhiwei He   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 120701.
Zhiwei He,Meng Zhan,Jianxiong Wang,Chenggui Yao. Constructing backbone network by using tinker algorithm. Front. Phys. , 2017, 12(6): 120701.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0645-7
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/120701
1 S. A. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, New York: Oxford University Press, 1993
2 U. Alon, An Introduction to System Biology: Design Principles of Biological Circuits, Boca Raton: Chapman & Hall, 2006
3 I. Rigoutsos and G. Stephanopoulos, Systems Biology: Networks, Models, and Applications, New York: Oxford University Press, 2007
4 X. F. Pang, Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II), Front. Phys. 3(4), 457 (2008)
https://doi.org/10.1007/s11467-008-0039-6
5 D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22(4), 403 (1976)
https://doi.org/10.1016/0021-9991(76)90041-3
6 H. de Jong, Modeling and simulation of genetic regulatory systems: A literature review, J. Comput. Biol. 9(1), 67 (2002)
https://doi.org/10.1089/10665270252833208
7 X. Cai and Z. M. Yuan, Stochastic modeling and simulation of the p53-MDM2/MDMX loop, J. Comput. Biol. 16(7), 917 (2009)
https://doi.org/10.1089/cmb.2008.0231
8 Y. P. Zhang, M. P. Qian, Q. Ouyang, M. H. Deng, F. T. Li, and C. Tang, Stochastic model of yeast cell-cycle network, Physica D 219(1), 35 (2006)
https://doi.org/10.1016/j.physd.2006.05.009
9 K. C. Chen, A. Csikász-Nagy, B. Gyorffy, J. Val, B. Novak, and J. J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle, Mol. Biol. Cell 11(1), 369 (2000)
https://doi.org/10.1091/mbc.11.1.369
10 B. Novak, Z. Pataki, A. Ciliberto, and J. J. Tyson, Mathematical model of the cell division cycle of fission yeast., Chaos 11(1), 277 (2001)
https://doi.org/10.1063/1.1345725
11 J. J. Tyson, K. Chen, and B. Novak, Network dynamics and cell physiology, Nat. Rev. Mol. Cell Biol. 2(12), 908 (2001)
https://doi.org/10.1038/35103078
12 J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15(2), 221 (2003)
https://doi.org/10.1016/S0955-0674(03)00017-6
13 A. Csikász-Nagy, Computational systems biology of the cell cycle, Brief. Bioinformatics 10(4), 424 (2009)
https://doi.org/10.1093/bib/bbp005
14 S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theor. Biol. 22(3), 437 (1969)
https://doi.org/10.1016/0022-5193(69)90015-0
15 F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. USA 101(14), 4781 (2004)
https://doi.org/10.1073/pnas.0305937101
16 S. Bornholdt, Systems biology. Less is more in modeling large genetic networks, Science 310(5747), 449 (2005)
https://doi.org/10.1126/science.1119959
17 G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-based network decomposition reveals backbone motif structure, Proc. Natl. Acad. Sci. USA 107(23), 10478 (2010)
https://doi.org/10.1073/pnas.0914180107
18 Q. Z. Xia, L. L. Liu, W. M. Ye, and G. Hu, Inference of gene regulatory networks with the strong-inhibition Boolean model, New J. Phys. 13(8), 083002 (2011)
https://doi.org/10.1088/1367-2630/13/8/083002
19 G. Wang, Y. Rong, H. Chen, C. Pearson, C. Du, R. Simha, and C. Zeng, Process-driven inference of biological network structure: Feasibility, minimality, and multiplicity, PLoS ONE 7(7), e40330 (2012)
https://doi.org/10.1371/journal.pone.0040330
20 M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE 3(2), e1672 (2008)
https://doi.org/10.1371/journal.pone.0001672
21 M. I. Davidich and S. Bornholdt, Boolean network model predicts knockout mutant phenotypes of fission yeast, PLoS ONE 8(9), e71786 (2013)
https://doi.org/10.1371/journal.pone.0071786
22 H. Kitano, Biological robustness, Nat. Rev. Genet. 5(11), 826 (2004)
https://doi.org/10.1038/nrg1471
23 J. Stelling, U. Sauer, Z. Szallasi, F. III. Doyle, and J. Doyle, Robustness of cellular functions, Cell 118(6), 675 (2004)
https://doi.org/10.1016/j.cell.2004.09.008
24 A. Wagner, Robustness and Evolvability in Living Systems, Princeton Studies in Complexity, Princeton: Princeton University Press, 2005
25 G. M. Cooper, The Cell: A Molecular Approach, Chapter 14, Washington: ASM Press, 2000
26 M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano, Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol. 216(1), 19 (2002)
https://doi.org/10.1006/jtbi.2002.2537
27 U. de Lichtenberg, L. J. Jensen, A. Fausbøll, T. S. Jensen, P. Bork, and S. Brunak, Comparison of computational methods for the identification of cell cycleregulated genes, Bioinformatics 21(7), 1164 (2005)
https://doi.org/10.1093/bioinformatics/bti093
28 F. T. Li, M. Y. Hu, B. Zhao, H. Yan, B. Wu, and Q. Ouyang, A globally attractive cycle driven by sequential bifurcations containing ghost effects in a 3-node yeast cell cycle model, arXiv: 1312.5204 (2014)
29 X. M. Zhang, B. Shao, Y. L. Wu, and Q. Ouyang, A reverse engineering approach to optimize experiments for the construction of biological regulatory networks, PLoS ONE 8(9), e75931 (2013)
https://doi.org/10.1371/journal.pone.0075931
30 L. Yang, Y. Meng, C. Bao, W. Liu, C. Ma, A. Li, Z. Xuan, G. Shan, and Y. Jia, Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition, PLoS ONE 8(3), e57009 (2013)
https://doi.org/10.1371/journal.pone.0057009
31 F. Jacob, Evolution and tinkering,Science 196(4295), 1161 (1977)
https://doi.org/10.1126/science.860134
32 U. Alon, Biological networks: The tinkerer as an engineer, Science 301(5641), 1866 (2003)
https://doi.org/10.1126/science.1089072
33 U. Alon, Network motifs: Theory and experimental approaches, Nat. Rev. Genet. 8(6), 450 (2007)
https://doi.org/10.1038/nrg2102
34 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks., Science 298(5594), 824 (2002)
https://doi.org/10.1126/science.298.5594.824
35 C. Oosawa and M. A. Savageau, Effects of alternative connectivity on behavior of randomly constructed Boolean networks, Physica D 170(2), 143 (2002)
https://doi.org/10.1016/S0167-2789(02)00530-4
36 S. Bornholdt and T. Rohlf, Topological evolution of dynamical networks: Global criticality from local dynamics, Phys. Rev. Lett. 84, 6114 (2000)
https://doi.org/10.1103/PhysRevLett.84.6114
37 M. C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg, and J. I. Garrels, YPD™, PombePD™ and WormPD™: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information, Nucleic Acids Res. 29(1), 75 (2001)
https://doi.org/10.1093/nar/29.1.75
38 T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar- Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young, Transcriptional regulatory networks in Saccharomyces cerevisiae, Science 298(5594), 799 (2002)
https://doi.org/10.1126/science.1075090
39 L. Mendoza and I. Xenarios, A method for the generation of standardized qualitative dynamical systems of regulatory networks, Theor. Biol. Med. Model 3(1), 13 (2006)
https://doi.org/10.1186/1742-4682-3-13
40 B. Novak and J. J. Tyson, Modeling the control of DNA replication in fission yeast, Proc. Natl. Acad. Sci. USA 94(17), 9147 (1997)
https://doi.org/10.1073/pnas.94.17.9147
41 A. Sveiczer, A. Csikász-Nagy, B. Gyorffy, J. J. Tyson, and B. Novak, Modeling the fission yeast cell cycle: Quantized cycle times in wee1- cdc25Delta mutant cells, Proc. Natl. Acad. Sci. USA 97(14), 7865 (2000)
https://doi.org/10.1073/pnas.97.14.7865
42 B. Li, B. Shao, C. Yu, Q. Ouyang, and H. Wang, A mathematical model for cell size control in fission yeast, J. Theor. Biol. 264(3), 771 (2010)
https://doi.org/10.1016/j.jtbi.2010.03.023
43 M. Davidich and S. Bornholdt, The transition from differential equations to Boolean networks: A case study in simplifying a regulatory network model, J. Theor. Biol. 255(3), 269 (2008)
https://doi.org/10.1016/j.jtbi.2008.07.020
44 Z. Y. Zhang, Z. Y. Li, G. Hu, and Z. G. Zheng, Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach, EPL 105(1), 18003 (2014)
https://doi.org/10.1209/0295-5075/105/18003
45 X. Liao, Q. Xia, Y. Qian, L. Zhang, G. Hu, and Y. Mi, Pattern formation in oscillatory complex networks consisting of excitable nodes, Phys Rev E 83, 056204 (2011)
https://doi.org/10.1103/PhysRevE.83.056204
46 B. Novak, A. Csikász-Nagy, B. Gyorffy, K. Nasmyth, and J. J. Tyson, Model scenarios for evolution of the eukaryotic cell cycle, Philos. Trans. R. Soc. Lond. B 353(1378), 2063 (1998)
https://doi.org/10.1098/rstb.1998.0352
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed