Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 138203   https://doi.org/10.1007/s11467-017-0693-7
  本期目录
High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials
Andrea Gabrieli, Marco Sant1, Saeed Izadi2, Parviz Seifpanahi Shabane3, Alexey V. Onufriev4(), Giuseppe B. Suffritti5,6()
1. Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
2. Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24060, USA
3. Department of Physics, Virginia Tech, Blacksburg, Virginia 24060, USA
4. Departments of Computer Science and Physics, Virginia Tech, Blacksburg, Virginia 24060, USA
5. Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
6. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna 2, 07100 Sassari, Italy
 全文: PDF(802 KB)  
Abstract

Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed “globally optimal” point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel–Fulcher–Tammann behavior to a linear trend with increasing temperature was detected atT*≈309 and T*≈285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed atT*≈315±5 K. We also verified that for the coefficient of thermal expansion αP (T, P), the isobaric αP(T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross nearT*, where the lifetimes are about 1 ps. For T<T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T<T*, whereas for T>T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

Key wordsdynamic crossover    molecular dynamics    bulk liquid water    water models
收稿日期: 2017-01-10      出版日期: 2018-02-28
Corresponding Author(s): Alexey V. Onufriev,Giuseppe B. Suffritti   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 138203.
Andrea Gabrieli, Marco Sant, Saeed Izadi, Parviz Seifpanahi Shabane, Alexey V. Onufriev, Giuseppe B. Suffritti. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Front. Phys. , 2018, 13(1): 138203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0693-7
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/138203
98 M. D.Marzio, G.Camisasca, M.Rovere , and P.Gallo, Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models, Nuovo Cim. 39(C), 302(2016)
1 P.Ball, Water: Water an enduring mystery, Nature452(7185), 291 (2008)
https://doi.org/10.1038/452291a
2 P.Gallo, K.Amann-Winkel, C. A.Angell , M. A.Anisimov, F.Caupin, C.Chakravarty , E.Lascaris, T.Loerting, A. Z.Panagiotopoulos , J.Russo, J. A.Sellberg, H. E.Stanley , H.Tanaka, C.Vega, L.Xu, and L. G. M.Pettersson, Water: A tale of two liquids, Chem. Rev. 116(13), 7463(2016)
https://doi.org/10.1021/acs.chemrev.5b00750
3 A.Nilssonand L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nat. Commun. 6, 8998(2015)
https://doi.org/10.1038/ncomms9998
4 H. E.Stanley, Advances in Chemical Physics: Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013
https://doi.org/10.1002/9781118540350
5 J. H.Simpsonand H. Y. Carr, Diffusion and nuclear spin relaxation in water, Phys. Rev.111(5), 1201(1958)
https://doi.org/10.1103/PhysRev.111.1201
6 F.Mallamace, C.Corsaro, and H. E.Stanley , A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep.2, 993(2012)
https://doi.org/10.1038/srep00993
7 F.Mallamace, C.Corsaro, D.Mallamace , C.Vasi, and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss. 167, 95(2013)
https://doi.org/10.1039/c3fd00073g
8 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and H. E.Stanley , Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141(18), 18C504(2014)
9 H. R.Pruppacher, Self-Diffusion coefficient of supercooled water, J. Chem. Phys. 56(1), 101(1972)
https://doi.org/10.1063/1.1676831
10 NIST Chemistry WebBook, 2008.
11 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, H. E.Stanley , and S. H.Chen, Some thermodynamical aspects of protein hydration water, J. Chem. Phys. 142(21), 215103(2015)
https://doi.org/10.1063/1.4921897
12 R.Speedyand C.Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at –45 °C, J. Chem. Phys. 65(3), 851(1976)
https://doi.org/10.1063/1.433153
13 P. W.Bridgman, Water, in the liquid and five solid forms, under pressure, in: Proceedings of the American Academy of Arts and Sciences, pp 441–558, JSTOR, 1912
https://doi.org/10.2307/20022754
14 G. S.Kell, Density, thermal expansivity, and compressibility of liquid water from 0°C to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data20(1), 97(1975)
https://doi.org/10.1021/je60064a005
15 G.Kelland E.Whalley, Reanalysis of the density of liquid water in the range 0–150 °C and 0–1 kbar, J. Chem. Phys. 62(9), 3496(1975)
https://doi.org/10.1063/1.430986
16 C.Sorensen, Densities and partial molar volumes of supercooled aqueous solutions, J. Chem. Phys. 79(3), 1455(1983)
https://doi.org/10.1063/1.445908
17 D.Hareand C.Sorensen, Densities of supercooled H2O and D2O in 25μ glass capillaries, J. Chem. Phys. 84(9), 5085(1986)
https://doi.org/10.1063/1.450660
18 D.Hareand C.Sorensen, The density of supercooled water (II): Bulk samples cooled to the homogeneous nucleation limit, J. Chem. Phys. 87(8), 4840(1987)
https://doi.org/10.1063/1.453710
19 O.Mishima, Volume of supercooled water under pressure and the liquid-liquid critical point, J. Chem. Phys. 133(14), 144503(2010)
https://doi.org/10.1063/1.3487999
20 W. D.Wilson, Speed of sound in distilled water as a function of temperature and pressure, J. Acoust. Soc. Am. 31(8), 1067(1959)
https://doi.org/10.1121/1.1907828
21 R. C.Doughertyand L. N. Howard, Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties, J. Chem. Phys. 109(17), 7379(1998)
https://doi.org/10.1063/1.477344
22 H.Vogel, The law of the relation between the viscosity of liquids and the temperature, Phys. Z. 22, 645(1921)
23 G. S.Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8(6), 339(1925)
https://doi.org/10.1111/j.1151-2916.1925.tb16731.x
24 G.Tammannand W.Hesse, The dependence of viscosity upon the temperature of supercooled liquids, Z. Anorg. Allg. Chem. 156, 245(1926)
https://doi.org/10.1002/zaac.19261560121
25 W. S.Price, H.Ide, and Y.Arata , Self-Diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A103(4), 448(1999)
https://doi.org/10.1021/jp9839044
26 D.Laageand J. T. Hynes, A molecular jump mechanism of water reorientation, Science311(5762), 832(2006)
https://doi.org/10.1126/science.1122154
27 D.Laageand J. T. Hynes, On the molecular mechanism of water reorientation, J. Phys. Chem. B112(45), 14230(2008)
https://doi.org/10.1021/jp805217u
28 G.Stirnemannand D.Laage, Direct evidence of angular jumps during water reorientation through twodimensional infrared anisotropy, J. Phys. Chem. Lett. 1(10), 1511(2010)
https://doi.org/10.1021/jz100385r
29 D.Laage, G.Stirnemann, F.Sterpone , and J. T.Hynes, Water jump reorientation: from theoretical prediction to experimental observation, Acc. Chem. Res. 45(1), 53(2012)
https://doi.org/10.1021/ar200075u
30 D.Laage, G.Stirnemann, F.Sterpone , R.Rey, and J. T. Hynes, Reorientation and allied dynamics in water and aqueous solutions, Annu. Rev. Phys. Chem. 62(1), 395(2011)
https://doi.org/10.1146/annurev.physchem.012809.103503
31 L. B.Skinner, C. J.Benmore, J. C.Neuefeind , and J. B.Parise , The structure of water around the compressibility minimum, J. Chem. Phys. 141(21), 214507(2014)
https://doi.org/10.1063/1.4902412
32 D.Schlesinger, K. T.Wikfeldt, L. B.Skinner , C. J.Benmore, A.Nilsson, and L. G. M.Pettersson , The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water, J. Chem. Phys. 145(8), 084503(2016)
https://doi.org/10.1063/1.4961404
33 F.Mallamace, C.Corsaro, D.Mallamace , S.Vasi, C.Vasi, and G.Dugo , The role of water in protein’s behavior: The two dynamical crossovers studied by NMR and FTIR techniques, Comput. Struct. Biotechnol. J. 13, 33(2015)
https://doi.org/10.1016/j.csbj.2014.11.007
34 P.Demontis, J.Gulín-González, M.Masia, M.Sant, and G. B. Suffritti, The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study, J. Chem. Phys. 142(24), 244507(2015)
https://doi.org/10.1063/1.4922930
35 H. W.Horn, W. C.Swope, J. W.Pitera , J. D.Madura, T. J.Dick, G. L.Hura, and T. Head-Gordon, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. 120(20), 9665(2004)
https://doi.org/10.1063/1.1683075
36 P.Demontis, J.Gulín-González, M.Masia, and G. B.Suffritti , The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment, J. Phys. Condens. Matter22(28), 284106(2010)
https://doi.org/10.1088/0953-8984/22/28/284106
37 P.Cicu, P.Demontis, S.Spanu , G. B.Suffritti, and A. Tilocca, Electric-field-dependent empirical potentials for molecules and crystals: A first application to flexible water molecule adsorbed in zeolites, J. Chem. Phys. 112(19), 8267(2000)
https://doi.org/10.1063/1.481432
38 S.Izadi, R.Anandakrishnan, and A. V.Onufriev , Building water models: A different approach, J. Phys. Chem. Lett. 5(21), 3863(2014)
https://doi.org/10.1021/jz501780a
39 R.Anandakrishnan, C. Baker, S.Izadi , and A. V.Onufriev , Point charges optimally placed to represent the multipole expansion of charge distributions, PLoS ONE8, e67715(2013)
https://doi.org/10.1371/journal.pone.0067715
40 C.Bergonzoand T. E. III Cheatham, Improved force field parameters lead to a better description of RNA structure, J. Chem. Theory Comput. 11(9), 3969(2015)
https://doi.org/10.1021/acs.jctc.5b00444
41 K.Gao, J.Yin, N. M.Henriksen , A. T.Fenley, and M. K. Gilson, Binding enthalpy calculations for a neutral hostguest pair yield widely divergent salt effects across water models, J. Chem. Theory Comput. 11(10), 4555(2015)
https://doi.org/10.1021/acs.jctc.5b00676
42 C. N.Nguyen, T.Kurtzman, and M. K.Gilson , Spatial decomposition of translational water-water correlation entropy in binding pockets, J. Chem. Theory Comput. 12(1), 414(2016)
https://doi.org/10.1021/acs.jctc.5b00939
43 F.Häseand M.Zacharias, Free energy analysis and mechanism of base pair stacking in nicked DNA, Nucleic Acids Res. 44(15), 7100(2016)
https://doi.org/10.1093/nar/gkw607
44 A.Mukhopadhyay, I. S. Tolokh, and A. V.Onufriev , Accurate evaluation of charge asymmetry in aqueous solvation, J. Phys. Chem. B119(20), 6092(2015)
https://doi.org/10.1021/acs.jpcb.5b00602
45 J. C.Phillips, R.Braun, W.Wang, J. Gumbart, E.Tajkhorshid , E.Villa, C.Chipot, R. D.Skeel , L.Kale, and K.Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781(2005)
https://doi.org/10.1002/jcc.20289
46 I. C.Yehand G.Hummer, System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions, J. Phys. Chem. B108(40), 15873(2004)
https://doi.org/10.1021/jp0477147
47 R. G.Gordon, Advances in Magnetic Resonance, Vol. 3, p. 1, New York: Academic Press Inc., 1968
https://doi.org/10.1016/B978-1-4832-3116-7.50008-4
48 A. Y.Zasetsky, Dielectric relaxation in liquid water: Two fractions or two dynamics? Phys. Rev. Lett. 107(11), 117601(2011)
https://doi.org/10.1103/PhysRevLett.107.117601
49 C. J.Fecko, J. J.Loparo, S. T.Roberts , and A.Tokmakoff , Local hydrogen bonding dynamics and collective reorganization in water: Ultrafast infrared spectroscopy of HOD/D2O, J. Chem. Phys. 122(5), 054506(2005)
https://doi.org/10.1063/1.1839179
50 J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (I): Vibrational dynamics in two-dimensional IR line shapes, J. Chem. Phys. 125(19), 194521(2006)
https://doi.org/10.1063/1.2382895
51 J. J.Loparo, S. T.Roberts, and A.Tokmakoff , Multidimensional infrared spectroscopy of water (II): Hydrogen bond switching dynamics, J. Chem. Phys. 125(19), 194522(2006)
https://doi.org/10.1063/1.2382896
52 J.Stenger, D.Madsen, P.Hamm , E. T.Nibbering, and T. Elsaesser, A photon echo peak shift study of liquid water, J. Phys. Chem. A106(10), 2341(2002)
https://doi.org/10.1021/jp013104k
53 M.Cowan, B. D.Bruner, N.Huse , J.Dwyer, B.Chugh, E.Nibbering , T.Elsaesser, and R.Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature434(7030), 199(2005)
https://doi.org/10.1038/nature03383
54 A.Luzarand D.Chandler, Hydrogen-bond kinetics in liquid water, Nature379(6560), 55(1996)
https://doi.org/10.1038/379055a0
55 A.Luzarand D.Chandler, Effect of environment on hydrogen bond dynamics in liquid water, Phys. Rev. Lett. 76(6), 928(1996)
https://doi.org/10.1103/PhysRevLett.76.928
56 F. W.Starr, J. K.Nielsen, and H. E.Stanley , Fast and slow dynamics of hydrogen bonds in liquid water, Phys. Rev. Lett. 82(11), 2294(1999)
https://doi.org/10.1103/PhysRevLett.82.2294
57 F. W.Starr, J. K.Nielsen, and H. E.Stanley , Hydrogenbond dynamics for the extended simple point-charge model of water, Phys. Rev. E62(1), 579(2000)
https://doi.org/10.1103/PhysRevE.62.579
58 A.Luzar, Resolving the hydrogen bond dynamics conundrum, J. Chem. Phys. 113(23), 10663(2000)
https://doi.org/10.1063/1.1320826
59 A.Luzar, Extent of inter-hydrogen bond correlations in water: Temperature effect, Chem. Phys. 258(2–3), 267(2000)
60 V.Voloshinand Y. I. Naberukhin, Hydrogen bond lifetime distributions in computer simulated water, J. Struct. Chem. 50(1), 78(2009)
https://doi.org/10.1007/s10947-009-0010-6
61 H.Martinianoand N.Galamba, Insights on hydrogenbond lifetimes in liquid and supercooled water, J. Phys. Chem. B117(50), 16188(2013)
https://doi.org/10.1021/jp407768u
62 B.Mukherjee, Microscopic origin of temporal heterogeneities in translational dynamics of liquid water, J. Chem. Phys. 143(5), 054503(2015)
https://doi.org/10.1063/1.4927709
63 O.Condeand J.Teixeira, Hydrogen bond dynamics in water studied by depolarized Rayleigh scattering, J. Phys. 44(4), 525(1983)
https://doi.org/10.1051/jphys:01983004404052500
64 J.Teixeira, M. C.Bellissent-Funel, S. H.Chen , and A. J.Dianoux , Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Phys. Rev. A31(3), 1913(1985)
https://doi.org/10.1103/PhysRevA.31.1913
65 C.Fecko, J.Eaves, J.Loparo, A. Tokmakoff, and P.Geissler , Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water, Science301(5640), 1698(2003)
https://doi.org/10.1126/science.1087251
66 D.Laage, Reinterpretation of the liquid water quasielastic neutron scattering spectra based on a nondiffusive jump reorientation mechanism, J. Phys. Chem. B113(9), 2684(2009)
https://doi.org/10.1021/jp900307n
67 R.Kumar, J.Schmidt, and J.Skinner , Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys.126(20), 204107(2007)
https://doi.org/10.1063/1.2742385
68 D.Prada-Gracia, R. Shevchuk, and F.Rao , The quest for self-consistency in hydrogen bond definitions, J. Chem. Phys. 139(8), 084501(2013)
https://doi.org/10.1063/1.4818885
69 A.Ozkanlar, T.Zhou, and A. E.Clark , Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach, J. Chem. Phys. 141(21), 214107(2014)
https://doi.org/10.1063/1.4902538
70 P.Wernet, D.Nordlund, U.Bergmann , M.Cavalleri, M.Odelius, H.Ogasawara , L. Å.Näslund , T. K.Hirsch, L.Ojamäe, P.Glatzel , L. G. M.Pettersson, and A. Nilsson, The structure of the first coordination shell in liquid water, Science304(5673), 995(2004)
https://doi.org/10.1126/science.1096205
71 R. H.Henchmanand S. J. Irudayam, Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water, J. Phys. Chem. B114(50), 16792(2010)
https://doi.org/10.1021/jp105381s
72 J.Jonas, T.DeFries, and D.Wilbur , Molecular motions in compressed liquid water, J. Chem. Phys.65(2), 582(1976)
https://doi.org/10.1063/1.433113
73 J.Ropp, C.Lawrence, T.Farrar , and J.Skinner, Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study, J. Am. Chem. Soc. 123(33), 8047(2001)
https://doi.org/10.1021/ja010312h
74 E. H.Hardy, A.Zygar, M. D.Zeidler , M.Holz, and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia,J. Chem. Phys. 114(7), 3174(2001)
https://doi.org/10.1063/1.1340584
75 R.Ludwig, F.Weinhold, and T. C.Farrar , Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water, J. Chem. Phys. 103(16), 6941(1995)
https://doi.org/10.1063/1.470371
76 J. A.Sellberg, C.Huang, T. A.McQueen , N. D.Loh, H.Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510(7505), 381(2014)
https://doi.org/10.1038/nature13266
77 C.Angelland F.Franks, Water: A Comprehensive Treatise, Vol. 7, New York: Plenum, 1982
78 H. E.Stanleyand O.Mishima, The relationship between liquid, supercooled and glassy water, Nature396(6709), 329(1998)
https://doi.org/10.1038/24540
79 L.Liu, S. H.Chen, A.Faraone, C. W. Yen, and C. Y.Mou , Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802(2005)
https://doi.org/10.1103/PhysRevLett.95.117802
80 S. V.Lishchuk, N. P.Malomuzh, and P. V.Makhlaichuk , Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A374(19–20), 2084(2010)
https://doi.org/10.1016/j.physleta.2010.02.070
81 A.Fisenko, N.Malomuzh, and A.Oleynik , To what extent are thermodynamic properties of water argonlike? Chem. Phys. Lett. 450(4–6), 297(2008)
https://doi.org/10.1016/j.cplett.2007.11.036
82 S.Izadi, B.Aguilar, and A. V.Onufriev , Proteinligand electrostatic binding free energies from explicit and implicit solvation, J. Chem. Theory Comput. 11(9), 4450(2015)
https://doi.org/10.1021/acs.jctc.5b00483
83 D.Nayarand C.Chakravarty, Sensitivity of local hydration behaviour and conformational preferences of peptides to choice of water model, Phys. Chem. Chem. Phys. 16(21), 10199(2014)
https://doi.org/10.1039/C3CP55147D
84 R. B.Bestand J.Mittal, Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse, J. Phys. Chem. B114(46), 14916(2010)
https://doi.org/10.1021/jp108618d
85 R. B.Bestand J.Mittal, Free-energy landscape of the gb1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences, Proteins79(4), 1318(2011)
https://doi.org/10.1002/prot.22972
86 P.Florová, P. Sklenovský, P.Banáš, and M.Otyepka , Explicit water models affect the specific solvation and dynamics of unfolded peptides while the conformational behavior and flexibility of folded peptides remain intact, J. Chem. Theory Comput. 6(11), 3569(2010)
https://doi.org/10.1021/ct1003687
87 H. E.Stanley, S. V.Buldyrev, G.Franzese , N.Giovambattista, and F. W. Starr, Static and dynamic heterogeneities in water, Philosophical Transactions of the Royal Society of London A363(1827), 509(2005)
88 A.Nilssonand L.Pettersson, Perspective on the structure of liquid water, Chem. Phys. 389(1–3), 1 (2011)
89 D.Prada-Gracia, R. Shevchuk, P.Hamm , and F.Rao, Towards a microscopic description of the free-energy landscape of water, J. Chem. Phys. 137(14), 144504(2012)
https://doi.org/10.1063/1.4755746
90 G. C.Picasso, D. C.Malaspina, M. A.Carignano , and I.Szleifer, Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water, J. Chem. Phys. 139(4), 044509(2013)
https://doi.org/10.1063/1.4816523
91 J. A.Sellberg, S.Kaya, V. H.Segtnan , C.Chen, T.Tyliszczak, H.Ogasawara , D.Nordlund, L. G. M. Pettersson, and A.Nilsson,Comparison of X-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section, J. Chem. Phys. 141(3), 034507(2014)
https://doi.org/10.1063/1.4890035
92 E.Duboué-Dijon and D.Laage, Characterization of the local structure in liquid water by various order parameters, J. Phys. Chem. B119(26), 8406(2015)
https://doi.org/10.1021/acs.jpcb.5b02936
93 R. S.Singh, J. W.Biddle, P. G.Debenedetti , and M. A.Anisimov , Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water, J. Chem. Phys. 144(14), 144504(2016)
https://doi.org/10.1063/1.4944986
94 Y.Xu, N. G.Petrik, R. S.Smith , B. D.Kay, and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proc. Natl. Acad. Sci. USA113(52), 14921(2016)
https://doi.org/10.1073/pnas.1611395114
95 K. A.Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005
96 W. L.Jorgensen, J. Chandrasekhar, J. D.Madura, R. W.Impey , and M. L.Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926(1983)
https://doi.org/10.1063/1.445869
97 J. L. F.Abascaland C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123(23), 234505(2005)
https://doi.org/10.1063/1.2121687
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed