Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 136701   https://doi.org/10.1007/s11467-017-0695-5
  本期目录
Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling
Dongyang Yu1, Jian-Song Pan2,3, Xiong-Jun Liu4,5(), Wei Zhang1,6(), Wei Yi2,3()
1. Department of Physics, Renmin University of China, Beijing 100872, China
2. Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China
3. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
4. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
5. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
6. Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
 全文: PDF(543 KB)  
Abstract

Coherently driven atomic gases inside optical cavities hold great promise for generating rich dynamics and exotic states of matter. It was shown recently that an exotic topological superradiant state exists in a two-component degenerate Fermi gas coupled to a cavity, where local order parameters coexist with global topological invariants. In this work, we characterize in detail various properties of this exotic state, focusing on the feedback interactions between the atoms and the cavity field. In particular, we demonstrate that cavity-induced interband coupling plays a crucial role in inducing the topological phase transition between the conventional and topological superradiant states. We analyze the interesting signatures in the cavity field left by the closing and reopening of the atomic bulk gap across the topological phase boundary and discuss the robustness of the topological superradiant state by investigating the steady-state phase diagram under various conditions. Furthermore, we consider the interaction effect and discuss the interplay between the pairing order in atomic ensembles and the superradiance of the cavity mode. Our work provides many valuable insights into the unique cavity– atom hybrid system under study and is helpful for future experimental exploration of the topological superradiant state.

Key wordssuperradiance    topological phase    Fermi gas    cavity QED
收稿日期: 2017-03-06      出版日期: 2017-09-07
Corresponding Author(s): Xiong-Jun Liu,Wei Zhang,Wei Yi   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 136701.
Dongyang Yu, Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi. Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling. Front. Phys. , 2018, 13(1): 136701.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0695-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/136701
1 Y. J.Lin, K.Jiménez-García, and I. B.Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
2 P.Wang, Z. Q.Yu, Z.Fu, J.Miao, L.Huang, S.Chai, H.Zhai, and J.Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301(2012)
https://doi.org/10.1103/PhysRevLett.109.095301
3 L. W.Cheuk, A. T.Sommer, Z.Hadzibabic,T.Yefsah, W. S.Bakr, and M. W.Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302(2012)
https://doi.org/10.1103/PhysRevLett.109.095302
4 Z. Y.Shi, X. L.Cui, and H.Zhai, Universal trimers induced by spin–orbit coupling in ultracold Fermi gases, Phys. Rev. Lett. 112(1), 013201(2014)
https://doi.org/10.1103/PhysRevLett.112.013201
5 X. L.Cuiand W.Yi, Universal Borromean binding in spin–orbit-coupled ultracold Fermi gases, Phys. Rev. X4(3), 031026(2014)
https://doi.org/10.1103/PhysRevX.4.031026
6 L.Zhou, X. L.Cui, and W.Yi, Three-component ultracold Fermi gases with spin–orbit coupling, Phys. Rev. Lett. 112(19), 195301(2014)
https://doi.org/10.1103/PhysRevLett.112.195301
7 V.Galitskiand I. B.Spielman, Spin–orbit coupling in quantum gases, Nature494(7435), 49(2013)
https://doi.org/10.1038/nature11841
8 N.Goldman, G.Juzeliünas, P.Öhberg, and I. B.Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401(2014)
https://doi.org/10.1088/0034-4885/77/12/126401
9 X.Zhou, Y.Li, Z.Cai, and C.Wu, Unconventional states of bosons with the synthetic spin–orbit coupling, J. Phys. At. Mol. Opt. Phys. 46(13), 134001(2013)
https://doi.org/10.1088/0953-4075/46/13/134001
10 H.Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001(2015)
https://doi.org/10.1088/0034-4885/78/2/026001
11 W.Yi, W.Zhang, and X. L.Cui, Pairing superfluidity in spin–orbit coupled ultracold Fermi gases, Sci. China Phys. Mech. Astron. 58(1), 1 (2015)
https://doi.org/10.1007/s11433-014-5609-8
12 J.Zhang, J.Hu, X. J.Liu, and H.Pu, Fermi gases with synthetic spin–orbit coupling, Ann. Rev. Cold At. Mol. 2, 81(2014)
https://doi.org/10.1142/9789814590174_0002
13 Y.Xuand C.Zhang, Topological Fulde–Ferrell superfluids of a spin–orbit coupled Fermi gas, Int. J. Mod. Phys. B29(01), 1530001(2015)
https://doi.org/10.1142/S0217979215300017
14 Y.Zhang, M. E.Mossman, T.Busch, P.Engels, and C.Zhang, Properties of spin–orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103(2016)
https://doi.org/10.1007/s11467-016-0560-y
15 M. Z.HasanandC. L.Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045(2010)
https://doi.org/10.1103/RevModPhys.82.3045
16 X. L.Qiand S. C.Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057(2011)
https://doi.org/10.1103/RevModPhys.83.1057
17 J.Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501(2012)
https://doi.org/10.1088/0034-4885/75/7/076501
18 C.Zhang,S.Tewari, R. M.Lutchyn, andS.Das Sarma, px+ipysuperfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101(16), 160401(2008)
https://doi.org/10.1103/PhysRevLett.101.160401
19 M.Sato,Y.Takahashi, and S.Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103(2), 020401(2009)
https://doi.org/10.1103/PhysRevLett.103.020401
20 C.Qu, Z.Zheng, M.Gong, Y.Xu, L.Mao, X.Zou, G.Guo, andC.Zhang, Topological superfluids with finitemomentum pairing and Majorana fermions, Nat. Commun. 4, 2710(2013)
https://doi.org/10.1038/ncomms3710
21 W.Zhangand W.Yi, Topological Fulde–Ferrell– Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases, Nat. Commun. 4, 2711(2013)
https://doi.org/10.1038/ncomms3711
22 X. J.Liu, Z. X.Liu, and M.Cheng, Manipulating topological edge spins in a one-dimensional optical lattice, Phys. Rev. Lett. 110(7), 076401(2013)
https://doi.org/10.1103/PhysRevLett.110.076401
23 X. J.Liu, K. T.Law, and T. K.Ng, Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401(2014) [Erratum: X. J.Liu, K. T.Law, and T. K.Ng, Phys. Rev. Lett. 113, 059901(2014)]
https://doi.org/10.1103/PhysRevLett.112.086401
24 F.Brennecke, T.Donner, S.Ritter, T.Bourdel, M.Köhl, and T.Esslinger, Cavity QED with a Bose– Einstein condensate, Nature450(7167), 268(2007)
https://doi.org/10.1038/nature06120
25 K.Baumann, C.Guerlin, F.Brennecke, and T.Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature464(7293), 1301(2010)
https://doi.org/10.1038/nature09009
26 H.Ritsch, P.Domokos, F.Brennecke, and T.Esslinger, Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys. 85(2), 553(2013)
https://doi.org/10.1103/RevModPhys.85.553
27 P.Domokosand H.Ritsch, Collective cooling and selforganization of atoms in a cavity, Phys. Rev. Lett. 89(25), 253003(2002)
https://doi.org/10.1103/PhysRevLett.89.253003
28 F.Dimer, B.Estienne, A. S.Parkins, and H. J.Carmichael, Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system, Phys. Rev. A75(1), 013804(2007)
https://doi.org/10.1103/PhysRevA.75.013804
29 D.Nagy, G.Konya, G.Szirmai, and P.Domokos, Dickemodel phase transition in the quantum motion of a Bose–Einstein condensate in an optical cavity, Phys. Rev. Lett. 104(13), 130401(2010)
https://doi.org/10.1103/PhysRevLett.104.130401
30 R.Landig, F.Brennecke, R.Mottl, T.Donner, and T.Esslinger, Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition, Nat. Commun. 6, 7046(2015)
https://doi.org/10.1038/ncomms8046
31 J.Keeling, M. J.Bhaseen, and B. D.Simons, Fermionic superradiance in a transversely pumped optical cavity, Phys. Rev. Lett. 112(14), 143002(2014)
https://doi.org/10.1103/PhysRevLett.112.143002
32 F.PiazzaandP.Strack, Umklapp superradiance with a collisionless quantum degenerate Fermi gas, Phys. Rev. Lett. 112(14), 143003(2014)
https://doi.org/10.1103/PhysRevLett.112.143003
33 Y.Chen, Z.Yu, and H.Zhai, Superradiance of degenerate Fermi gases in a cavity, Phys. Rev. Lett. 112(14), 143004(2014)
https://doi.org/10.1103/PhysRevLett.112.143004
34 Y.Deng, J.Cheng, H.Jing, and S.Yi, Bose–Einstein condensates with cavity-mediated spin–orbit coupling, Phys. Rev. Lett. 112(14), 143007(2014)
https://doi.org/10.1103/PhysRevLett.112.143007
35 L.Dong, L.Zhou,B.Wu, B.Ramachandhran, and H.Pu, Cavity-assisted dynamical spin–orbit coupling in cold atoms, Phys. Rev. A89, 011602(R)(2014)
36 J. S.Pan, X. J.Liu, W.Zhang, W.Yi, and G. C.Guo,Topological superradiant states in a degenerate Fermi gas, Phys. Rev. Lett. 115(4), 045303(2015)
https://doi.org/10.1103/PhysRevLett.115.045303
37 L.Dong, C.Zhu, and H.Pu, Photon-induced spin–orbit coupling in ultracold atoms inside optical cavity, Atoms3(2), 182(2015)
https://doi.org/10.3390/atoms3020182
38 C.Kollath, A.Sheikhan, S.Wolff, and F.Brennecke, Ultracold Fermions in a cavity-induced artificial magnetic field, Phys. Rev. Lett. 116(6), 060401(2016)
https://doi.org/10.1103/PhysRevLett.116.060401
39 M.Wang, P.Meystre, W.Zhang, and Q.He, Steadystate atom-light entanglement with engineered spin– orbit coupling, Phys. Rev. A93(4), 042311(2016)
https://doi.org/10.1103/PhysRevA.93.042311
40 L.Zhouand X. L.Cui, Spin–orbit coupled ultracold gases in optical lattices: High-band physics and insufficiency of tight-binding models, Phys. Rev. B92(14), 140502(2015)
https://doi.org/10.1103/PhysRevB.92.140502
41 R.Gehr, J.Volz, G.Dubois, T.Steinmetz, Y.Colombe, B. L.Lev, R.Long, J.Estève, andJ.Reichel, Cavitybased single atom preparation and high-fidelity hyperfine state readout, Phys. Rev. Lett. 104(20), 203602(2010)
https://doi.org/10.1103/PhysRevLett.104.203602
42 W.Zhang, G. D.Lin, and L. M.Duan, BCS–BEC crossover of a quasi-two-dimensional Fermi gas: The significance of dressed molecules, Phys. Rev. A77(6), 063613(2008)
https://doi.org/10.1103/PhysRevA.77.063613
43 W.Zhang, G. D.Lin, and L. M.Duan, Berezinskii– Kosterlitz–Thouless transition in a trapped quasi-twodimensional Fermi gas near a Feshbach resonance, Phys. Rev. A78(4), 043617(2008)
https://doi.org/10.1103/PhysRevA.78.043617
44 J.-K.Wang, W.Yi, and W.Zhang, Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling, Front. Phys. 11(3), 118102(2016)
https://doi.org/10.1007/s11467-015-0529-2
45 M.Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81(5), 938(1998)
https://doi.org/10.1103/PhysRevLett.81.938
46 H.Moritz, T.Stöferle, M.Köhl, and T.Esslinger, Exciting collective oscillations in a trapped 1D gas, Phys. Rev. Lett. 91(25), 250402(2003)
https://doi.org/10.1103/PhysRevLett.91.250402
47 T.Kinoshita, T.Wenger, and D. S.Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science305(5687), 1125(2004)
https://doi.org/10.1126/science.1100700
48 B.Paredes, A.Widera,V.Murg, O.Mandel, S.Fölling, I.Cirac, G. V.Shlyapnikov, T. W.Hänsch, and I.Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature429(6989), 277(2004)
https://doi.org/10.1038/nature02530
49 X. J.Liu, H.Hu, and P. D.Drummond, Fulde– Ferrell–Larkin–Ovchinnikov states in one-dimensional spin-polarized ultracold atomic Fermi gases, Phys. Rev. A76(4), 043605(2007)
https://doi.org/10.1103/PhysRevA.76.043605
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed