Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 130501   https://doi.org/10.1007/s11467-017-0697-3
  本期目录
Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices
Xuzhen Gao1,2, Jianhua Zeng1()
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100084, China
 全文: PDF(839 KB)  
Abstract

The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.

A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.

Key wordssoliton    vortex    Bose–Einstein condensate    periodic potential
收稿日期: 2017-01-14      出版日期: 2017-08-28
Corresponding Author(s): Jianhua Zeng   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 130501.
Xuzhen Gao, Jianhua Zeng. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices. Front. Phys. , 2018, 13(1): 130501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0697-3
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/130501
1 L.Pitaevskii and S.Stringari, Bose–Einstein Condensation, Oxford: Oxford University Press, 2003
2 C. J.Pethickand H.Smith, Bose–Einstein Condensate in Dilute Gas, Cambridge: Cambridge University Press, 2008
https://doi.org/10.1017/CBO9780511802850
3 A.Griffin, T.Nikuni, and E.Zaremba, Bose-condensed Gases at Finite Temperature, Cambridge: Cambridge University Press, 2009
https://doi.org/10.1017/CBO9780511575150
4 P. G.Kevrekidis, D. J.Frantzeskakis, and R.Carretero-González, Emergent Nonlinear Phenomena in Bose– Einstein Condensates, Berlin: Springer, 2008
https://doi.org/10.1007/978-3-540-73591-5
5 H. T. C.Stoof, K. B.Gubbels, and D. B. M.Dickerscheid, Ultracold Quantum Fields, Dordrecht: Springer, 2009
6 M.Weidemüllerand C.Zimmermann(Eds.), Cold Atoms and Molecules, Weinheim: Wiley-VCH, 2009
7 R.Krems, W. C.Stwalley, andB.Friedrich, Cold Molecules: Theory, Experiment, Applications, Boca Raton: CRC Press, 2009
8 D. S.Jin, J. R.Ensher, M. R.Matthews, C. E.Wieman, and E. A.Cornell, Collective excitations of a Bose– Einstein condensate in a dilute gas, Phys. Rev. Lett. 77(3), 420 (1996)
https://doi.org/10.1103/PhysRevLett.77.420
9 M. O.Mewes, M. R.Andrews, N. J.van Druten, D. M.Kurn, D. S.Durfee, and W.Ketterle, Bose–Einstein condensation in a tightly confining dc magnetic trap, Phys. Rev. Lett. 77(3), 416(1996)
https://doi.org/10.1103/PhysRevLett.77.416
10 M. O.Mewes, M. R.Andrews, N. J.van Druten, D. M.Kurn, D. S.Durfee, C. G.Townsend, and W.Ketterle, Collective excitations of a Bose–Einstein condensate in a magnetic trap, Phys. Rev. Lett. 77(6), 988(1996)
https://doi.org/10.1103/PhysRevLett.77.988
11 S.Burger, K.Bongs, S.Dettmer, W.Ertmer, K.Sengstock, A.Sanpera, G. V.Shlyapnikov, and M.Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198(1999)
https://doi.org/10.1103/PhysRevLett.83.5198
12 B. P.Anderson, P. C.Haljan, C. A.Regal, D. L.Feder, L. A.Collins, C. W.Clark, and E. A.Cornell, Watching dark solitons decay into vortex rings in a Bose–Einstein condensate, Phys. Rev. Lett.86(14), 2926(2001)
https://doi.org/10.1103/PhysRevLett.86.2926
13 A.Muryshev, G. V.Shlyapnikov, W.Ertmer, K.Sengstock, and M.Lewenstein, Dynamics of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 89(11), 110401(2002)
https://doi.org/10.1103/PhysRevLett.89.110401
14 J.Denschlag, J. E.Simsarian, D. L.Feder, C. W.Clark, L. A.Collins, J.Cubizolles, L.Deng, E. W.Hagley, K.Helmerson, W. P.Reinhardt, S. L.Rolston, B. I.Schneider, and W. D.Phillips, Generating solitons by phase engineering of a Bose–Einstein condensate, Science287(5450), 97(2000)
https://doi.org/10.1126/science.287.5450.97
15 Z.Dutton, M.Budde, C.Slowe, andL. V.Hau, Observation of quantum shock waves created with ultracompressed slow light pulses in a Bose–Einstein condensate, Science293(5530), 663(2001)
https://doi.org/10.1126/science.1062527
16 D. J.Frantzeskakis, Dark solitons in atomic Bose– Einstein condensates: From theory to experiments, J. Phys. A Math. Theor. 43(21), 213001(2010)
https://doi.org/10.1088/1751-8113/43/21/213001
17 U.Al Khawaja, H. T. C.Stoof, R. G.Hulet, K. E.Strecker, and G. B.Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404(2002)
https://doi.org/10.1103/PhysRevLett.89.200404
18 S. L.Cornish, S. T.Thompson, and C. E.Wieman, Formation of bright matter-wave solitons during the collapse of attractive Bose–Einstein condensates, Phys. Rev. Lett. 96(17), 170401(2006)
https://doi.org/10.1103/PhysRevLett.96.170401
19 L.Khaykovich, F.Schreck, G.Ferrari, T.Bourdel, J.Cubizolles, L. D.Carr, Y.Castin, and C.Salomon, Formation of a matter-wave bright soliton, Science296(5571), 1290(2002)
https://doi.org/10.1126/science.1071021
20 K. E.Stecker, G. B.Partridge,A. G.Truscott, and R. G.Hulet, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Nature89, 110401(2002)
21 B.Eiermann, Th.Anker, M.Albiez, M.Taglieber, P.Treutlein, K. P.Marzlin, and M. K.Oberthaler, Bright Bose–Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett. 92(23), 230401(2004)
https://doi.org/10.1103/PhysRevLett.92.230401
22 M. R.Matthews, B. P.Anderson, P. C.Haljan, D. S.Hall, C. E.Wieman, and E. A.Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498(1999)
https://doi.org/10.1103/PhysRevLett.83.2498
23 K. W.Madison, F.Chevy, W.Wohlleben, and J.Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett. 84, 86809(1999)
24 S.Inouye, S.Gupta, T.Rosenband, A. P.Chikkatur, A.Görlitz, T. L.Gustavson, A. E.Leanhardt, D. E.Pritchard, and W.Ketterle, Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett. 87(8), 080402(2001)
https://doi.org/10.1103/PhysRevLett.87.080402
25 V.Schweikhard, I.Coddington, P.Engels, S.Tung, and E. A.Cornell, Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates, Phys. Rev. Lett. 93(21), 210403(2004)
https://doi.org/10.1103/PhysRevLett.93.210403
26 J. R.Abo-Shaeer,C.Raman, J. M.Vogels, and W.Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science292(5516), 476(2001)
https://doi.org/10.1126/science.1060182
27 Y. S.Kivsharand G. P.Agrawal, Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic, 2003
28 L.Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259(1998)
https://doi.org/10.1016/S0370-1573(97)00092-6
29 Y. S.Kivsharand D. E.Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331(4), 117(2000)
https://doi.org/10.1016/S0370-1573(99)00106-4
30 B. A.Malomed, D.Mihalache,F.Wise, and L.Torner, Spatiotemporal optical solitons, J. Optics B7(5), R53(2005)
https://doi.org/10.1088/1464-4266/7/5/R02
31 B. A.Malomed,L.Torner, F.Wise, and D.Mihalache, On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics, J. Optics B: At. Mol. Opt. Phys. 49, 170502(2016)
https://doi.org/10.1088/0953-4075/49/17/170502
32 B. A.Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507(2016)
https://doi.org/10.1140/epjst/e2016-60025-y
33 V. E.Zakharovand E. A.Kuznetsov, Solitons and collapses: Two evolution scenarios of nonlinear wave systems, Phys. Uspekhi55(6), 535(2012)
https://doi.org/10.3367/UFNe.0182.201206a.0569
34 D.Mihalache, Linear and nonlinear light bullets: Recent theoretical and experimental studies, Rom. J. Phys. 57, 352(2012)
35 D.Mihalache, Multidimensional localized structures in optics and Bose–Einstein condensates: A selection of recent studies, Rom. J. Phys. 59, 295(2014)
36 C.Sulemand P.Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Berlin: Springer, 2000
37 G.Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Dordrecht: Springer, 2015
https://doi.org/10.1007/978-3-319-12748-4
38 R. Y.Chiao, E.Garmire, and C. H.Townes, Selftrapping of optical beams, Phys. Rev. Lett. 13(15), 479(1964)
https://doi.org/10.1103/PhysRevLett.13.479
39 D.Mihalache, D.Mazilu, B. A.Malomed, andF.Lederer, Vortex stability in nearly-two-dimensional Bose– Einstein condensates with attraction, Phys. Rev. A73(4), 043615(2006)
https://doi.org/10.1103/PhysRevA.73.043615
40 B. A.Malomed, F.Lederer, D.Mazilu, and D.Mihalache, On stability of vortices in three-dimensional self-attractive Bose–Einstein condensates, Phys. Lett. A361(4–5), 336(2007)
https://doi.org/10.1016/j.physleta.2006.09.054
41 D. E.Pelinovsky, Localization in Periodic Potential: From Schrödinger Operators to the Gross–Pitaevskii Equation, Cambridge: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9780511997754
42 V. A.Brazhnyiand V. V.Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B18(14), 627(2004)
https://doi.org/10.1142/S0217984904007190
43 O.Morschand M.Oberthaler, Dynamics of Bose– Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179(2006)
https://doi.org/10.1103/RevModPhys.78.179
44 Y. V.Kartashov, B. A.Malomed, and L.Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247(2011)
https://doi.org/10.1103/RevModPhys.83.247
45 Y. V.Kartashov, V. A.Vysloukh, and L.Torner, Soliton shape and mobility control in optical lattices, Progress in Optics52, 63(2009) (edited by E. Wolf, Amsterdam: North Holland)
46 B. B.Baizakov, B. A.Malomed, andM.Salerno, Multidimensional solitons in periodic potentials, Europhys. Lett. 63(5), 642(2003)
https://doi.org/10.1209/epl/i2003-00579-4
47 B. B.Baizakov, B. A.Malomed, and M.Salerno, Multidimensional solitons in a low-dimensional periodic potential, Phys. Rev. A70(5), 053613(2004)
https://doi.org/10.1103/PhysRevA.70.053613
48 J.Yangand Z. H.Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094(2003)
https://doi.org/10.1364/OL.28.002094
49 H.Sakaguchiand B. A.Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B37(11), 2225(2004)
https://doi.org/10.1088/0953-4075/37/11/001
50 J. D.Joannopoulos, S. G.Johnson, J. N.Winn, and R. D.Meade, Photonic Crystals: Molding the Flow of Light, Princeton: Princeton University Press, 2008
51 I. L.Garanovich, S.Longhi, A. A.Sukhorukov, and Y. S.Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)
https://doi.org/10.1016/j.physrep.2012.03.005
52 Z.Chen, M.Segev, and D. N.Christodoulides, Optical spatial solitons: Historical overview and recent advances, Rep. Prog. Phys. 75(8), 086401(2012)
https://doi.org/10.1088/0034-4885/75/8/086401
53 D. N.Neshev, T. J.Alexander, E. A.Ostrovskaya, Y. S.Kivshar, H.Martin, I.Makasyuk, and Z.Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92(12), 123903(2004)
https://doi.org/10.1103/PhysRevLett.92.123903
54 J. W.Fleischer, G.Bartal, O.Cohen, O.Manela, M.Segev, J.Hudock, and D. N.Christodoulides,Observation of vortex-ring discrete solitons in 2D photonic lattices, Phys. Rev. Lett. 92(12), 123904(2004)
https://doi.org/10.1103/PhysRevLett.92.123904
55 E. A.Cerda-Méndez, D.Sarkar, D. N.Krizhanovskii, S. S.Gavrilov, K.Biermann, M. S.Skolnick, and P. V.Santos, Exciton–polariton gap solitons in twodimensional lattices, Phys. Rev. Lett. 111(14), 146401(2013)
https://doi.org/10.1103/PhysRevLett.111.146401
56 H.Sakaguchiand B. A.Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E72(4), 046610(2005)
https://doi.org/10.1103/PhysRevE.72.046610
57 Y. V.Kartashov, B. A.Malomed, V. A.Vysloukh, and L.Torner, Vector solitons in nonlinear lattices, Opt. Lett. 34(23), 3625(2009)
https://doi.org/10.1364/OL.34.003625
58 H.Sakaguchiand B. A.Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A81(1), 013624(2010)
https://doi.org/10.1103/PhysRevA.81.013624
59 J.Zengand B. A.Malomed, Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials, Phys. Scr.T149, 014035(2012)
60 H.Sakaguchiand B. A.Malomed, Two-dimensional solitons in the Gross–Pitaevskii equation with spatially modulated nonlinearity, Phys. Rev. E73(2), 026601(2006)
https://doi.org/10.1103/PhysRevE.73.026601
61 Y. V.Kartashov,B. A.Malomed, V. A.Vysloukh, and L.Torner, Two-dimensional solitons in nonlinear lattices, Opt. Lett. 34(6), 770(2009)
https://doi.org/10.1364/OL.34.000770
62 Y.Sivan, G.Fibich, B.Ilan, and M. I.Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons, Phys. Rev. E78(4), 046602(2008)
https://doi.org/10.1103/PhysRevE.78.046602
63 N. V.Hung, P.Ziń, M.Trippenbach, and B. A.Malomed, Two dimensional solitons in media with stripeshaped nonlinearity modulation, Phys. Rev. E82(4), 046602(2010)
https://doi.org/10.1103/PhysRevE.82.046602
64 T.Mayteevarunyoo, B. A.Malomed, and A.Reoksabutr, Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials, J. Mod. Opt. 58(21), 1977(2011)
https://doi.org/10.1080/09500340.2011.601329
65 Y. V.Kartashov, V. A.Vysloukh, A.Szameit, F.Dreisow, M.Heinrich, S.Nolte, A.Tunnermann, T.Pertsch, and L.Torner, Surface solitons at interfaces of arrays with spatially modulated nonlinearity, Opt. Lett. 33(10), 1120(2008)
https://doi.org/10.1364/OL.33.001120
66 V.Skarka, V. I.Berezhiani, and R.Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media, Phys. Rev. E56(1), 1080(1997)
https://doi.org/10.1103/PhysRevE.56.1080
67 M.Quiroga-Teixeiroand H.Michinel, Stable azimuthal stationary state in quintic nonlinear optical media, J. Opt. Soc. Am. B14(8), 2004(1997)
https://doi.org/10.1364/JOSAB.14.002004
68 R.Carretero-González, J. D.Talley, C.Chong, and B. A.Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation, Physica D216(1), 77(2006)
https://doi.org/10.1016/j.physd.2006.01.022
69 C.Chong, R.Carretero-González, B. A.Malomed, and P. G.Kevrekidis, Multistable solitons in higherdimensional cubic-quintic nonlinear Schrödinger lattices, Physica D238(2), 126(2009)
https://doi.org/10.1016/j.physd.2008.10.002
70 N.Drorand B. A.Malomed, Symmetric and asymmetric solitons and vortices in linearly coupled twodimensional waveguides with the cubic-quintic nonlinearity, Physica D240(6), 526(2011)
https://doi.org/10.1016/j.physd.2010.11.001
71 D.Mihalache, D.Mazilu, F.Lederer, H.Leblond, and B. A.Malomed, Stability of dissipative optical solitons in the three dimensional cubic-quintic Ginzburg–Landau equation, Phys. Rev. A75(3), 033811(2007)
https://doi.org/10.1103/PhysRevA.75.033811
72 N.Viet Hung, M.Trippenbach, E.Infeld, and B. A.Malomed, Spatial control of the competition between self-focusing and self-defocusing nonlinearities in one-and two-dimensional systems, Phys. Rev. A90(2), 023841(2014)
https://doi.org/10.1103/PhysRevA.90.023841
73 S.Loomba, R.Pal, and C. N.Kumar, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A92(3), 033811(2015)
https://doi.org/10.1103/PhysRevA.92.033811
74 J.Zengand B. A.Malomed, Stabilization of onedimensional solitons against the critical collapse by quintic nonlinear lattices, Phys. Rev. A85(2), 023824(2012)
https://doi.org/10.1103/PhysRevA.85.023824
75 M.Vakhitov, and A.Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783(1973)
https://doi.org/10.1007/BF01031343
76 E. L.Falcão-Filho, C. B.de Araújo, G.Boudebs, H.Leblond, and V.Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett.110(1), 013901(2013)
https://doi.org/10.1103/PhysRevLett.110.013901
77 X.Antoine, W.Bao, and C.Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations, Comput. Phys. Commun. 184(12), 2621(2013)
https://doi.org/10.1016/j.cpc.2013.07.012
78 A. S.Reyna, K. C.Jorge, and C. B.de Araújo, Two-dimensional solitons in a quintic-septimal medium, Phys. Rev. A90(6), 063835(2014)
https://doi.org/10.1103/PhysRevA.90.063835
79 A. S.Reyna, B. A.Malomed, and C. B.de Araújo, Stability conditions for one-dimensional optical solitons in cubicquintic-septimal media, Phys. Rev. A92(3), 033810(2015)
https://doi.org/10.1103/PhysRevA.92.033810
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed