Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 136201   https://doi.org/10.1007/s11467-017-0703-9
  本期目录
PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications
Salvatore Spadaro1, Marco Santoro1, Francesco Barreca1, Angela Scala2, Simona Grimato1, Fortunato Neri1, Enza Fazio1()
1. Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
2. Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
 全文: PDF(21042 KB)  
Abstract

A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

Key wordsAu@Fe2O3 nanoparticles    PEG-PLGA copolymer    pulsed laser ablation    electrospinning    drug delivery
收稿日期: 2017-03-02      出版日期: 2017-09-07
Corresponding Author(s): Enza Fazio   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 136201.
Salvatore Spadaro, Marco Santoro, Francesco Barreca, Angela Scala, Simona Grimato, Fortunato Neri, Enza Fazio. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications. Front. Phys. , 2018, 13(1): 136201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0703-9
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/136201
1 P.Raghavan, D. H.Lim, J. H.Ahn, C.Nah, D. C.Sherrington, H. S.Ryu, and H. J.Ahn, Electrospun polymer nanofibers: The booming cutting edge technology, React. Funct. Polym. 72(12), 915 (2012)
https://doi.org/10.1016/j.reactfunctpolym.2012.08.018
2 A.Krupa, A.Jaworek, A. T.Sobczyk, M.Lackowski, T.Czech, S.Ramakrishna, S.Sundarrajan, and D.Pliszka, Electrosprayed nanoparticles for nanofiber coating, ILASS 2008, 8-10.IX. 2008, Como Lake, Italy (Proc., Paper ID P-13)
3 K. C.Gupta, A.Haider, Y.Choi, and I.Kang, Nanofibrous scaffolds in biomedical applications, Biomaterials Research18(1), 5 (2014)
https://doi.org/10.1186/2055-7124-18-5
4 S. Y.Chew, J.Wen, E. K. F.Yim, and K. W.Leong, Sustained release of proteins from electrospun biodegradable fibers, Biomacromolecules6(4), 2017(2005)
https://doi.org/10.1021/bm0501149
5 F.Zheng, S.Wang, M.Shen, M.Zhu, and X.Shi, Antitumor efficacy of doxorubicin-loaded electrospun nanohydroxyapatite– poly(lactic-co-glycolic acid) composite nanofibers, Polym. Chem. 4(4), 933(2013)
https://doi.org/10.1039/C2PY20779F
6 Z. M.Huang, Y. Z.Zhang, M.Kotaki, and S.Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63(15), 2223(2003)
https://doi.org/10.1016/S0266-3538(03)00178-7
7 T. T.Marquez-Lago, D. M.Allen, andJ.Thewalt, A novel approach to modelling water transport and drug diffusion through the stratum corneum, Theor. Biol. Med. Model. 7(1), 33(2010)
https://doi.org/10.1186/1742-4682-7-33
8 E.Fazio, A.Scala, S.Grimato, A.Ridolfo, G.Grassi, and F.Neri, Laser light triggered smart release of silibinin from a PEGylated–PLGA gold nanocomposite, J. Mater. Chem. B Mater. Biol. Med. 3(46), 9023(2015)
https://doi.org/10.1039/C5TB01076D
9 F.Neri, A.Scala, S.Grimato, M.Santoro, S.Spadaro, F.Barreca, F.Cimino, A.Speciale, A.Saija, G.Grassi, and E.Fazio, Biocompatible silver nanoparticles embedded in a PEG–PLA polymeric matrix for stimulated laser light drug release, J. Nanopart. Res. 18(6), 153(2016)
https://doi.org/10.1007/s11051-016-3467-1
10 A.Hervaultand N. T. K.Thanh, Magnetic nanoparticle-based therapeutic agents for thermochemotherapy treatment of cancer, Nanoscale6(20), 11553(2014)
https://doi.org/10.1039/C4NR03482A
11 E.Fazio, M.Santoro, G.Lentini, D.Franco, S. P. P.Guglielmino, and F.Neri, Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity, Colloids Surf. A Physicochem. Eng. Asp. 490, 98(2016)
https://doi.org/10.1016/j.colsurfa.2015.11.034
12 S. H.Shimand T. S.Duffy, Raman spectroscopy of Fe2O3 to 62 GPa, Am. Mineral. 87(2–3), 318(2002)
https://doi.org/10.2138/am-2002-2-314
13 V.Rebuttini, E.Fazio, S.Santangelo, F.Neri, G.Caputo, C.Martin, T.Brousse, F.Favier, and N.Pinna, Chemical modification of graphene oxide through diazonium chemistry and its influence on the structureproperty relationships of graphene oxide-iron oxide nanocomposites, Chemistry21(35), 1 (2015)
https://doi.org/10.1002/chem.201500836
14 C. S. S. R.Kumarand F.Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Deliv. Rev. 63(9), 789(2011)
https://doi.org/10.1016/j.addr.2011.03.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed